File size: 3,756 Bytes
9ba2a1c
 
a67942c
9ba2a1c
 
 
 
 
 
0f31a21
 
9ba2a1c
 
 
 
 
 
 
 
 
 
 
 
f65253b
9ba2a1c
a67942c
51499e8
9ba2a1c
 
 
a67942c
9ba2a1c
 
a67942c
9ba2a1c
d240a60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e6e92
9ba2a1c
d3e6e92
 
 
 
 
9ba2a1c
d3e6e92
 
9ba2a1c
d3e6e92
9ba2a1c
d240a60
9ba2a1c
 
 
 
 
 
 
a151b72
98cb8af
9ba2a1c
 
3b97833
eac425b
 
3b97833
 
 
 
 
 
9ba2a1c
 
 
 
d240a60
9ba2a1c
fd96c94
9ba2a1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch

import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os

access_token=os.getenv("access_token")

MODEL_NAME = "openai/whisper-large-v3"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
YT_LENGTH_LIMIT_S = 3600  # limit to 1 hour YouTube files

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
    token=access_token
)


def transcribe(inputs, task):
    if inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return  text


#def _return_yt_html_embed(yt_url):
    #video_id = yt_url.split("?v=")[-1]
    #HTML_str = (
    #    f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
    #    " </center>"
    #)
    #return HTML_str

#def download_yt_audio(yt_url, filename):
    #info_loader = youtube_dl.YoutubeDL()
    #
    #try:
    #    info = info_loader.extract_info(yt_url, download=False)
    #except youtube_dl.utils.DownloadError as err:
    #    raise gr.Error(str(err))
    #
    #file_length = info["duration_string"]
    #file_h_m_s = file_length.split(":")
    #file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    #
    #if len(file_h_m_s) == 1:
    #    file_h_m_s.insert(0, 0)
    #if len(file_h_m_s) == 2:
    #    file_h_m_s.insert(0, 0)
    #file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    #
    #if file_length_s > YT_LENGTH_LIMIT_S:
    #    yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
    #    file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
    #    raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    #
    #ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    #
    #with youtube_dl.YoutubeDL(ydl_opts) as ydl:
    #    try:
    #        ydl.download([yt_url])
    #    except youtube_dl.utils.ExtractorError as err:
    #        raise gr.Error(str(err))


#def yt_transcribe(yt_url, task, max_filesize=75.0):
    #html_embed_str = _return_yt_html_embed(yt_url)

    #with tempfile.TemporaryDirectory() as tmpdirname:
        #filepath = os.path.join(tmpdirname, "video.mp4")
        #download_yt_audio(yt_url, filepath)
        #with open(filepath, "rb") as f:
            #inputs = f.read()

    #inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    #inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    #text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]

    #return None#html_embed_str, text


demo = gr.Blocks()

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(),
        gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
    ],
    outputs="text",
    #layout="horizontal",
    #theme="huggingface",
    #title="Whisper Large V3: Transcribe Audio",
    #description=(
    #    "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
    #    f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
    #    " of arbitrary length."
    #),
    #allow_flagging="never",
)


with demo:
    gr.TabbedInterface([ file_transcribe], [ "Audio file"])

demo.launch(share=True)