chrisjay commited on
Commit
866cafe
·
1 Parent(s): 820ea84

work on trainin and dashboard statistics

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. app.py +254 -57
  3. data_mnist +1 -0
  4. mnist_c/brightness/test_images.npy +3 -0
  5. mnist_c/brightness/test_labels.npy +3 -0
  6. mnist_c/brightness/train_images.npy +3 -0
  7. mnist_c/brightness/train_labels.npy +3 -0
  8. mnist_c/canny_edges/test_images.npy +3 -0
  9. mnist_c/canny_edges/test_labels.npy +3 -0
  10. mnist_c/canny_edges/train_images.npy +3 -0
  11. mnist_c/canny_edges/train_labels.npy +3 -0
  12. mnist_c/dotted_line/test_images.npy +3 -0
  13. mnist_c/dotted_line/test_labels.npy +3 -0
  14. mnist_c/dotted_line/train_images.npy +3 -0
  15. mnist_c/dotted_line/train_labels.npy +3 -0
  16. mnist_c/fog/test_images.npy +3 -0
  17. mnist_c/fog/test_labels.npy +3 -0
  18. mnist_c/fog/train_images.npy +3 -0
  19. mnist_c/fog/train_labels.npy +3 -0
  20. mnist_c/glass_blur/test_images.npy +3 -0
  21. mnist_c/glass_blur/test_labels.npy +3 -0
  22. mnist_c/glass_blur/train_images.npy +3 -0
  23. mnist_c/glass_blur/train_labels.npy +3 -0
  24. mnist_c/identity/test_images.npy +3 -0
  25. mnist_c/identity/test_labels.npy +3 -0
  26. mnist_c/identity/train_images.npy +3 -0
  27. mnist_c/identity/train_labels.npy +3 -0
  28. mnist_c/impulse_noise/test_images.npy +3 -0
  29. mnist_c/impulse_noise/test_labels.npy +3 -0
  30. mnist_c/impulse_noise/train_images.npy +3 -0
  31. mnist_c/impulse_noise/train_labels.npy +3 -0
  32. mnist_c/motion_blur/test_images.npy +3 -0
  33. mnist_c/motion_blur/test_labels.npy +3 -0
  34. mnist_c/motion_blur/train_images.npy +3 -0
  35. mnist_c/motion_blur/train_labels.npy +3 -0
  36. mnist_c/rotate/test_images.npy +3 -0
  37. mnist_c/rotate/test_labels.npy +3 -0
  38. mnist_c/rotate/train_images.npy +3 -0
  39. mnist_c/rotate/train_labels.npy +3 -0
  40. mnist_c/scale/test_images.npy +3 -0
  41. mnist_c/scale/test_labels.npy +3 -0
  42. mnist_c/scale/train_images.npy +3 -0
  43. mnist_c/scale/train_labels.npy +3 -0
  44. mnist_c/shear/test_images.npy +3 -0
  45. mnist_c/shear/test_labels.npy +3 -0
  46. mnist_c/shear/train_images.npy +3 -0
  47. mnist_c/shear/train_labels.npy +3 -0
  48. mnist_c/shot_noise/test_images.npy +3 -0
  49. mnist_c/shot_noise/test_labels.npy +3 -0
  50. mnist_c/shot_noise/train_images.npy +3 -0
.gitattributes CHANGED
@@ -26,3 +26,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
  *ubyte* filter=lfs diff=lfs merge=lfs -text
 
 
 
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
  *ubyte* filter=lfs diff=lfs merge=lfs -text
29
+ *.npy filter=lfs diff=lfs merge=lfs -text
30
+ *.png filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -2,51 +2,163 @@ import os
2
  import torch
3
  import gradio as gr
4
  import torchvision
 
5
  from utils import *
6
  import torch.nn as nn
7
  import torch.nn.functional as F
8
  import torch.optim as optim
9
  from huggingface_hub import Repository, upload_file
 
 
 
10
 
11
 
12
 
13
- n_epochs = 3
14
- batch_size_train = 64
 
15
  batch_size_test = 1000
16
  learning_rate = 0.01
17
  momentum = 0.5
18
  log_interval = 10
19
  random_seed = 1
20
-
 
 
21
  REPOSITORY_DIR = "data"
22
  LOCAL_DIR = 'data_local'
23
  os.makedirs(LOCAL_DIR,exist_ok=True)
24
 
25
 
 
 
26
  HF_TOKEN = os.getenv("HF_TOKEN")
27
 
28
  HF_DATASET ="mnist-adversarial-dataset"
 
 
 
 
 
29
 
30
  torch.backends.cudnn.enabled = False
31
  torch.manual_seed(random_seed)
32
 
33
- train_loader = torch.utils.data.DataLoader(
34
- torchvision.datasets.MNIST('files/', train=True, download=True,
35
- transform=torchvision.transforms.Compose([
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  torchvision.transforms.ToTensor(),
37
  torchvision.transforms.Normalize(
38
  (0.1307,), (0.3081,))
39
- ])),
 
 
 
 
 
40
  batch_size=batch_size_train, shuffle=True)
 
41
 
42
- test_loader = torch.utils.data.DataLoader(
43
- torchvision.datasets.MNIST('files/', train=False, download=True,
44
- transform=torchvision.transforms.Compose([
45
- torchvision.transforms.ToTensor(),
46
- torchvision.transforms.Normalize(
47
- (0.1307,), (0.3081,))
48
- ])),
49
- batch_size=batch_size_test, shuffle=True)
50
 
51
 
52
  # Source: https://nextjournal.com/gkoehler/pytorch-mnist
@@ -69,7 +181,7 @@ class MNIST_Model(nn.Module):
69
  return F.log_softmax(x)
70
 
71
 
72
- def train(epochs,network,optimizer):
73
 
74
  train_losses=[]
75
  network.train()
@@ -102,10 +214,11 @@ def test():
102
  correct += pred.eq(target.data.view_as(pred)).sum()
103
  test_loss /= len(test_loader.dataset)
104
  test_losses.append(test_loss)
 
 
105
  test_metric = '〽Current test metric - Avg. loss: `{:.4f}`, Accuracy: `{}/{}` (`{:.0f}%`)\n'.format(
106
- test_loss, correct, len(test_loader.dataset),
107
- 100. * correct / len(test_loader.dataset))
108
- return test_metric
109
 
110
 
111
 
@@ -156,15 +269,41 @@ def image_classifier(inp):
156
 
157
  def train_and_test():
158
  # Train for one epoch and test
159
- train(1,network,optimizer)
160
- test_metric = test()
161
-
162
- def flag(input_image,correct_result,train):
163
- # take an image, the wrong result, the correct result.
164
- # push to dataset.
165
- # get size of current dataset
166
-
167
- # Write audio to file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
  metadata_name = get_unique_name()
169
  SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
170
  os.makedirs(SAVE_FILE_DIR,exist_ok=True)
@@ -182,7 +321,7 @@ def flag(input_image,correct_result,train):
182
 
183
  dump_json(metadata,json_file_path)
184
 
185
- # Simply upload the audio file and metadata using the hub's upload_file
186
  # Upload the image
187
  repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'image.png'))
188
 
@@ -201,43 +340,84 @@ def flag(input_image,correct_result,train):
201
  repo_type='dataset',
202
  token=HF_TOKEN
203
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
- output = f'<div> ✔ Successfully saved to flagged dataset. </div>'
206
- train=True
207
- if train:
208
- output = f'<div> ✔ Successfully saved to flagged dataset. Training the model on adversarial data! </div>'
209
 
210
- return output,train
 
 
 
 
 
 
 
 
 
 
211
 
 
 
212
 
 
 
 
 
213
 
214
- def main():
215
- TITLE = "# MNIST Adversarial: Try to fool this MNIST model"
216
- description = """This project is about dynamic adversarial data collection (DADC).
217
- The basic idea is to collect “adversarial data” - the kind of data that is difficult for a model to predict correctly.
218
- This kind of data is presumably the most valuable for a model, so this can be helpful in low-resource settings where data is hard to collect and label.
219
-
220
- ### What to do:
221
- - Draw a number from 0-9.
222
- - Click `Submit` and see the model's prediciton.
223
- - If the model misclassifies it, Flag that example.
224
- - This will add your (adversarial) example to a dataset on which the model will be trained later.
225
- """
226
 
227
- MODEL_IS_WRONG = """
228
- ---
229
 
230
- > Did the model get it wrong? Choose the correct prediction below and flag it. When you flag it, the instance is saved to our dataset and the model is trained on it.
231
- """
 
232
  #block = gr.Blocks(css=BLOCK_CSS)
233
  block = gr.Blocks()
234
 
235
  with block:
236
  gr.Markdown(TITLE)
 
237
 
238
  with gr.Tabs():
239
- gr.Markdown(description)
240
  with gr.TabItem('MNIST'):
 
 
241
  with gr.Row():
242
 
243
 
@@ -249,15 +429,32 @@ def main():
249
  number_dropdown = gr.Dropdown(choices=[i for i in range(10)],type='value',default=None,label="What was the correct prediction?")
250
 
251
  flag_btn = gr.Button("Flag")
 
252
  output_result = gr.outputs.HTML()
253
- to_train = gr.Variable(value=False)
 
 
254
  submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
255
- flag_btn.click(flag,inputs=[image_input,number_dropdown,to_train],outputs=[output_result,to_train])
256
- if to_train.value:
257
- import pdb;pdb.set_trace()
258
- train_and_test()
259
 
260
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261
  block.launch()
262
 
263
 
 
2
  import torch
3
  import gradio as gr
4
  import torchvision
5
+ from PIL import Image
6
  from utils import *
7
  import torch.nn as nn
8
  import torch.nn.functional as F
9
  import torch.optim as optim
10
  from huggingface_hub import Repository, upload_file
11
+ from torch.utils.data import Dataset
12
+ import numpy as np
13
+ from collections import Counter
14
 
15
 
16
 
17
+
18
+ n_epochs = 10
19
+ batch_size_train = 128
20
  batch_size_test = 1000
21
  learning_rate = 0.01
22
  momentum = 0.5
23
  log_interval = 10
24
  random_seed = 1
25
+ TRAIN_CUTOFF = 5
26
+ WHAT_TO_DO=WHAT_TO_DO.format(num_samples=TRAIN_CUTOFF)
27
+ METRIC_PATH = './metrics.json'
28
  REPOSITORY_DIR = "data"
29
  LOCAL_DIR = 'data_local'
30
  os.makedirs(LOCAL_DIR,exist_ok=True)
31
 
32
 
33
+
34
+
35
  HF_TOKEN = os.getenv("HF_TOKEN")
36
 
37
  HF_DATASET ="mnist-adversarial-dataset"
38
+ DATASET_REPO_URL = f"https://huggingface.co/datasets/chrisjay/{HF_DATASET}"
39
+ repo = Repository(
40
+ local_dir="data_mnist", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
41
+ )
42
+ repo.git_pull()
43
 
44
  torch.backends.cudnn.enabled = False
45
  torch.manual_seed(random_seed)
46
 
47
+
48
+ class MNISTAdversarial_Dataset(Dataset):
49
+
50
+ def __init__(self,data_dir,transform):
51
+ repo.git_pull()
52
+ self.data_dir = os.path.join(data_dir,'data')
53
+ self.transform = transform
54
+ files = [f.name for f in os.scandir(self.data_dir)]
55
+ self.images = []
56
+ self.numbers = []
57
+ for f in files:
58
+ self.FOLDER = os.path.join(os.path.join(self.data_dir,f))
59
+
60
+ metadata_path = os.path.join(self.FOLDER,'metadata.jsonl')
61
+
62
+ image_path =os.path.join(self.FOLDER,'image.png')
63
+ if os.path.exists(image_path) and os.path.exists(metadata_path):
64
+ img = Image.open(image_path)
65
+ self.images.append(img)
66
+ metadata = read_json_lines(metadata_path)
67
+ self.numbers.append(metadata[0]['correct_number'])
68
+ assert len(self.images)==len(self.numbers), f"Length of images and numbers must be the same. Got {len(self.images)} for images and {len(self.numbers)} for numbers."
69
+ def __len__(self):
70
+ return len(self.images)
71
+
72
+ def __getitem__(self,idx):
73
+ img, label = self.images[idx], self.numbers[idx]
74
+ img = self.transform(img)
75
+ return img, label
76
+
77
+ class MNISTCorrupted_By_Digit(Dataset):
78
+ def __init__(self,transform,digit,limit=30):
79
+ self.transform = transform
80
+ self.digit = digit
81
+ corrupted_dir="./mnist_c"
82
+ files = [f.name for f in os.scandir(corrupted_dir)]
83
+ images = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_images.npy')) for f in files]
84
+ labels = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_labels.npy')) for f in files]
85
+ self.data = np.vstack(images)
86
+ self.labels = np.hstack(labels)
87
+
88
+ assert (self.data.shape[0] == self.labels.shape[0])
89
+
90
+ mask = self.labels == self.digit
91
+
92
+ data_masked = self.data[mask]
93
+ # Just to be on the safe side, ensure limit is more than the minimum
94
+ limit = min(limit,data_masked.shape[0])
95
+
96
+ self.data_for_use = data_masked[:limit]
97
+ self.labels_for_use = self.labels[mask][:limit]
98
+ assert (self.data_for_use.shape[0] == self.labels_for_use.shape[0])
99
+
100
+ def __len__(self):
101
+ return len(self.data_for_use)
102
+ def __getitem__(self,idx):
103
+ if torch.is_tensor(idx):
104
+ idx = idx.tolist()
105
+
106
+ image = self.data_for_use[idx]
107
+ label = self.labels_for_use[idx]
108
+ if self.transform:
109
+ image_pil = torchvision.transforms.ToPILImage()(image) # Need to transform to PIL before using default transforms
110
+ image = self.transform(image_pil)
111
+
112
+ return image, label
113
+
114
+
115
+
116
+
117
+
118
+ class MNISTCorrupted(Dataset):
119
+ def __init__(self,transform):
120
+ self.transform = transform
121
+ corrupted_dir="./mnist_c"
122
+ files = [f.name for f in os.scandir(corrupted_dir)]
123
+ images = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_images.npy')) for f in files]
124
+ labels = [np.load(os.path.join(os.path.join(corrupted_dir,f),'test_labels.npy')) for f in files]
125
+ self.data = np.vstack(images)
126
+ self.labels = np.hstack(labels)
127
+
128
+ assert (self.data.shape[0] == self.labels.shape[0])
129
+
130
+ def __len__(self):
131
+ return len(self.data)
132
+
133
+ def __getitem__(self, idx):
134
+ if torch.is_tensor(idx):
135
+ idx = idx.tolist()
136
+
137
+ image = self.data[idx]
138
+ label = self.labels[idx]
139
+ if self.transform:
140
+ image_pil = torchvision.transforms.ToPILImage()(image) # Need to transform to PIL before using default transforms
141
+ image = self.transform(image_pil)
142
+
143
+ return image, label
144
+
145
+
146
+
147
+ TRAIN_TRANSFORM = torchvision.transforms.Compose([
148
  torchvision.transforms.ToTensor(),
149
  torchvision.transforms.Normalize(
150
  (0.1307,), (0.3081,))
151
+ ])
152
+
153
+ '''
154
+ train_loader = torch.utils.data.DataLoader(
155
+ torchvision.datasets.MNIST('files/', train=True, download=True,
156
+ transform=TRAIN_TRANSFORM),
157
  batch_size=batch_size_train, shuffle=True)
158
+ '''
159
 
160
+ test_loader = torch.utils.data.DataLoader(MNISTCorrupted(TRAIN_TRANSFORM),
161
+ batch_size=batch_size_test, shuffle=False)
 
 
 
 
 
 
162
 
163
 
164
  # Source: https://nextjournal.com/gkoehler/pytorch-mnist
 
181
  return F.log_softmax(x)
182
 
183
 
184
+ def train(epochs,network,optimizer,train_loader):
185
 
186
  train_losses=[]
187
  network.train()
 
214
  correct += pred.eq(target.data.view_as(pred)).sum()
215
  test_loss /= len(test_loader.dataset)
216
  test_losses.append(test_loss)
217
+ acc = 100. * correct / len(test_loader.dataset)
218
+ acc = acc.item()
219
  test_metric = '〽Current test metric - Avg. loss: `{:.4f}`, Accuracy: `{}/{}` (`{:.0f}%`)\n'.format(
220
+ test_loss, correct, len(test_loader.dataset),acc )
221
+ return test_metric,acc
 
222
 
223
 
224
 
 
269
 
270
  def train_and_test():
271
  # Train for one epoch and test
272
+ train_dataset = MNISTAdversarial_Dataset('./data_mnist',TRAIN_TRANSFORM)
273
+
274
+ train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size_test, shuffle=True
275
+ )
276
+ train(n_epochs,network,optimizer,train_loader)
277
+ test_metric,test_acc = test()
278
+
279
+ if os.path.exists(METRIC_PATH):
280
+ metric_dict = read_json(METRIC_PATH)
281
+ metric_dict['all'] = metric_dict['all'] if 'all' in metric_dict else [] + [test_acc]
282
+ else:
283
+ metric_dict={}
284
+ metric_dict['all'] = [test_acc]
285
+
286
+ for i in range(10):
287
+ data_per_digit = MNISTCorrupted_By_Digit(TRAIN_TRANSFORM,i)
288
+ dataloader_per_digit = torch.utils.data.DataLoader(data_per_digit,batch_size=len(data_per_digit), shuffle=False)
289
+ data_per_digit, label_per_digit = iter(dataloader_per_digit).next()
290
+ output = network(data_per_digit)
291
+ pred = output.data.max(1, keepdim=True)[1]
292
+ correct = pred.eq(label_per_digit.data.view_as(pred)).sum()
293
+ acc = 100. * correct / len(data_per_digit)
294
+ acc=acc.item()
295
+ if os.path.exists(METRIC_PATH):
296
+ metric_dict[str(i)].append(acc)
297
+ else:
298
+ metric_dict[str(i)] = [acc]
299
+
300
+ dump_json(thing=metric_dict,file=METRIC_PATH)
301
+ return test_metric
302
+
303
+ def flag(input_image,correct_result,adversarial_number):
304
+
305
+ adversarial_number = 0 if None else adversarial_number
306
+
307
  metadata_name = get_unique_name()
308
  SAVE_FILE_DIR = os.path.join(LOCAL_DIR,metadata_name)
309
  os.makedirs(SAVE_FILE_DIR,exist_ok=True)
 
321
 
322
  dump_json(metadata,json_file_path)
323
 
324
+ # Simply upload the image file and metadata using the hub's upload_file
325
  # Upload the image
326
  repo_image_path = os.path.join(REPOSITORY_DIR,os.path.join(metadata_name,'image.png'))
327
 
 
340
  repo_type='dataset',
341
  token=HF_TOKEN
342
  )
343
+ adversarial_number+=1
344
+ output = f'<div> ✔ ({adversarial_number}) Successfully saved your adversarial data. </div>'
345
+ repo.git_pull()
346
+ length_of_dataset = len([f for f in os.scandir("./data_mnist/data")])
347
+ test_metric = f"<html> {DEFAULT_TEST_METRIC} </html>"
348
+ if length_of_dataset % TRAIN_CUTOFF ==0:
349
+ test_metric_ = train_and_test()
350
+ test_metric = f"<html> {test_metric_} </html>"
351
+ output = f'<div> ✔ ({adversarial_number}) Successfully saved your adversarial data and trained the model on adversarial data! </div>'
352
+ return output,test_metric,adversarial_number
353
+
354
+ def get_number_dict(DATA_DIR):
355
+ files = [f.name for f in os.scandir(DATA_DIR)]
356
+ numbers = [read_json_lines(os.path.join(os.path.join(DATA_DIR,f),'metadata.jsonl'))[0]['correct_number'] for f in files]
357
+ numbers_count = Counter(numbers)
358
+ numbers_count_keys = list(numbers_count.keys())
359
+ numbers_count_values = [numbers_count[k] for k in numbers_count_keys]
360
+ return numbers_count_keys,numbers_count_values
361
+
362
+
363
+
364
+ def get_statistics():
365
+ model_state_dict = 'model.pth'
366
+ optimizer_state_dict = 'optmizer.pth'
367
+
368
+ if os.path.exists(model_state_dict):
369
+ network_state_dict = torch.load(model_state_dict)
370
+ network.load_state_dict(network_state_dict)
371
+
372
+ if os.path.exists(optimizer_state_dict):
373
+ optimizer_state_dict = torch.load(optimizer_state_dict)
374
+ optimizer.load_state_dict(optimizer_state_dict)
375
+ repo.git_pull()
376
+ DATA_DIR = './data_mnist/data'
377
+ numbers_count_keys,numbers_count_values = get_number_dict(DATA_DIR)
378
+
379
+
380
+ plt_digits = plot_bar(numbers_count_values,numbers_count_keys,'Number of adversarial samples',"Digit",f"Distribution of adversarial samples over digits")
381
 
382
+ fig_d, ax_d = plt.subplots(figsize=(10,4),tight_layout=True)
 
 
 
383
 
384
+ if os.path.exists(METRIC_PATH):
385
+ metric_dict = read_json(METRIC_PATH)
386
+ for i in range(10):
387
+ try:
388
+ x_i = [i+1 for i in range(len(metric_dict[str(i)]))]
389
+ ax_d.plot(x_i, metric_dict[str(i)],label=str(i))
390
+ except Exception:
391
+ continue
392
+ dump_json(thing=metric_dict,file=METRIC_PATH)
393
+ else:
394
+ metric_dict={}
395
 
396
+ fig_d.legend()
397
+ ax_d.set(xlabel='Adversarial train steps', ylabel='MNIST_C Test Accuracy',title="Test Accuracy over digits per train step")
398
 
399
+ done_html = """<div style="color: green">
400
+ <p> ✅ Statistics loaded successfully!</p>
401
+ </div>
402
+ """
403
 
404
+ return plt_digits,fig_d,done_html
 
 
 
 
 
 
 
 
 
 
 
405
 
 
 
406
 
407
+
408
+
409
+ def main():
410
  #block = gr.Blocks(css=BLOCK_CSS)
411
  block = gr.Blocks()
412
 
413
  with block:
414
  gr.Markdown(TITLE)
415
+ gr.Markdown(description)
416
 
417
  with gr.Tabs():
 
418
  with gr.TabItem('MNIST'):
419
+ gr.Markdown(WHAT_TO_DO)
420
+ test_metric = gr.outputs.HTML(DEFAULT_TEST_METRIC)
421
  with gr.Row():
422
 
423
 
 
429
  number_dropdown = gr.Dropdown(choices=[i for i in range(10)],type='value',default=None,label="What was the correct prediction?")
430
 
431
  flag_btn = gr.Button("Flag")
432
+
433
  output_result = gr.outputs.HTML()
434
+ adversarial_number = gr.Variable(value=0)
435
+
436
+
437
  submit.click(image_classifier,inputs = [image_input],outputs=[label_output])
438
+ flag_btn.click(flag,inputs=[image_input,number_dropdown,adversarial_number],outputs=[output_result,test_metric,adversarial_number])
 
 
 
439
 
440
+ with gr.TabItem('Dashboard') as dashboard:
441
+ notification = gr.HTML("""<div style="color: green">
442
+ <p> ⌛ Creating statistics... </p>
443
+ </div>
444
+ """)
445
+ _,numbers_count_values_ = get_number_dict('./data_mnist/data')
446
+
447
+ STATS_EXPLANATION_ = STATS_EXPLANATION.format(num_adv_samples = sum(numbers_count_values_))
448
+
449
+ gr.Markdown(STATS_EXPLANATION_)
450
+ stat_adv_image =gr.Plot(type="matplotlib")
451
+ gr.Markdown(DASHBOARD_EXPLANATION)
452
+ test_results=gr.Plot(type="matplotlib")
453
+
454
+ dashboard.select(get_statistics,inputs=[],outputs=[stat_adv_image,test_results,notification])
455
+
456
+
457
+
458
  block.launch()
459
 
460
 
data_mnist ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit eb1e3cf9de597112c1da3b921ffcd07c8e4419c1
mnist_c/brightness/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0be26b927b2be43bc0b2430ccf6aa6048a5fcd8bcd087d97576972f009c1e8a9
3
+ size 7840128
mnist_c/brightness/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/brightness/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:466c8f7365f37d14012ec66e2d1203ef07acae08240bb1af1863f09318293255
3
+ size 47040128
mnist_c/brightness/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/canny_edges/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e86b158456cbaf0bf621092259f186a223b68e31128c18cceedb8a2f1b8baf1f
3
+ size 7840128
mnist_c/canny_edges/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/canny_edges/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6454058f0025bd15f34f9d14df4fdf2cca8f47b38661da5b650bee9c77aac5
3
+ size 47040128
mnist_c/canny_edges/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/dotted_line/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02f5a8bd11e1bed6ca5f31418c6804a4f89ab5abdaba38f880e4743294516c6b
3
+ size 7840128
mnist_c/dotted_line/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/dotted_line/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2d1ad4696a96af19f6bcd07a2ea9f2fb0990910397ef41b969d26080aef23cb
3
+ size 47040128
mnist_c/dotted_line/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/fog/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f48ea89b4793c45bedda39bd27b42710f4f0cbf5bced559597c015157188488
3
+ size 7840128
mnist_c/fog/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/fog/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c92a6df9c3703b3df29fdb272d829736e706150104a7f7c81f37387940120e9
3
+ size 47040128
mnist_c/fog/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/glass_blur/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:300a4829b7fe6e4cfa5ad0e134cf19136e2c23e1e6bc29b6c574848b6a493388
3
+ size 7840128
mnist_c/glass_blur/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/glass_blur/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:255b6832620840d2db4423212d02c903d4edf5b31b94e16ac130f2539c73275f
3
+ size 47040128
mnist_c/glass_blur/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/identity/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c544e9053023b30ffd401a9825696f84af6fb1eb822bba5fcffc6992808357c3
3
+ size 7840128
mnist_c/identity/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/identity/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f323590fab80abce68b33a35fb0a176bed275ab73b934621f7583bd1c7c1b1ba
3
+ size 47040128
mnist_c/identity/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/impulse_noise/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63ad2d4c0860dca3814da6034943dda6e9fe267ba6e12136341c52f2c13ca3d5
3
+ size 7840128
mnist_c/impulse_noise/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/impulse_noise/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5921469548b8d051544f29b984112d0680054bba619b7a69a1479cbd082b9563
3
+ size 47040128
mnist_c/impulse_noise/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/motion_blur/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7767b48be95a63abcdf851a4baedc0491d5643a192072e4f6de0a14c75cb089e
3
+ size 7840128
mnist_c/motion_blur/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/motion_blur/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f11f24aa857845517b700892d5dcbeeb8c2ee3a7b0028e27a6231c9aaa4f32db
3
+ size 47040128
mnist_c/motion_blur/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/rotate/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fb565f28d858733ec94d4e6d976d9f2cb3e6aa75deb9a7a11b0504b9ae64520
3
+ size 7840128
mnist_c/rotate/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/rotate/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:505bcc0035d1f36fe6560e39cbb3888ed0130d429bca92019f29b0cfe5ab8724
3
+ size 47040128
mnist_c/rotate/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/scale/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:282dfee12607c13ea76cc82985e3e5d78f36b44d56d6ad9f12a2298e20ea2200
3
+ size 7840128
mnist_c/scale/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/scale/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f558258555337a45d82b572a6a2ed48c3117985213937ded3fc6a738832b4f1b
3
+ size 47040128
mnist_c/scale/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/shear/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38412620554c8d775e38d6b9d771b4825605998179e88bd004d8d5d0a7afaa7d
3
+ size 7840128
mnist_c/shear/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/shear/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:133295f31cf838b4905b8e05083570e8189e37839168f37e3e83831244e54579
3
+ size 47040128
mnist_c/shear/train_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10226b938104d9231ead4e9a0627f17e66cd18baf31a28784f1b72147057decf
3
+ size 480128
mnist_c/shot_noise/test_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c7026fb754f234a1563711576266f179f47b6f5e4a8e43dfbbb182e1299d764
3
+ size 7840128
mnist_c/shot_noise/test_labels.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996074233ccae69ee65b8551233f608adc1bce84b6b440e3531478a847958149
3
+ size 80128
mnist_c/shot_noise/train_images.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67dc136c87501002f971be5dabd14c8e56615af61c699a7707faf4185dfbfdf6
3
+ size 47040128