Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
pass # Implement your image segmentation model here...
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import requests
|
| 6 |
-
|
| 7 |
-
from transformers import CLIPProcessor, CLIPModel
|
| 8 |
-
|
| 9 |
-
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 10 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 11 |
-
|
| 12 |
-
#url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 13 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
| 14 |
-
|
| 15 |
-
inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
|
| 16 |
-
|
| 17 |
-
outputs = model(**inputs)
|
| 18 |
-
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
| 19 |
-
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
| 20 |
|
| 21 |
gr.Interface(fn=segment, inputs="image", outputs="image").launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
#Salesforce/BLIP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
gr.Interface(fn=segment, inputs="image", outputs="image").launch()
|