chris999 commited on
Commit
d5fecd7
·
1 Parent(s): 26e1d80

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -0
app.py CHANGED
@@ -1,5 +1,21 @@
1
  import gradio as gr
2
  def segment(image):
3
  pass # Implement your image segmentation model here...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  gr.Interface(fn=segment, inputs="image", outputs="image").launch()
 
1
  import gradio as gr
2
  def segment(image):
3
  pass # Implement your image segmentation model here...
4
+ from PIL import Image
5
+ import requests
6
+
7
+ from transformers import CLIPProcessor, CLIPModel
8
+
9
+ model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
10
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
11
+
12
+ #url = "http://images.cocodataset.org/val2017/000000039769.jpg"
13
+ image = Image.open(requests.get(url, stream=True).raw)
14
+
15
+ inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
16
+
17
+ outputs = model(**inputs)
18
+ logits_per_image = outputs.logits_per_image # this is the image-text similarity score
19
+ probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
20
 
21
  gr.Interface(fn=segment, inputs="image", outputs="image").launch()