File size: 5,064 Bytes
344afb4
 
 
 
 
 
d406225
344afb4
d406225
344afb4
d406225
344afb4
 
d406225
344afb4
 
 
 
 
 
d406225
 
344afb4
 
 
 
 
 
 
 
 
 
 
7119b4f
344afb4
 
 
 
 
 
 
 
 
 
 
d406225
 
42708d3
d406225
 
 
 
 
344afb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d406225
 
 
 
 
 
 
 
344afb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
##Setup

#Import the necessary Libraries
import os
import uuid
import json

import gradio as gr

from openai import OpenAI

from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma

from huggingface_hub import CommitScheduler
from pathlib import Path

# Create Client

client = OpenAI(
    #base_url="https://api.endpoints.anyscale.com/v1",
    api_key=os.environ["anyscale_api_key"]
)

# Define the embedding model and the vectorstore
embedding_model = SentenceTransformerEmbeddings(model_name='thenlper/gte-large')

# Load the persisted vectorDB
collection_name = 'finsights-grey-10k-2023'

vectorstore_persisted = Chroma(
    collection_name=collection_name,
    embedding_function=embedding_model,
    persist_directory='finsights_db'
)

retriever = vectorstore_persisted.as_retriever(
    search_type="similarity",
    search_kwargs={'k': 5},
)

# Prepare the logging functionality
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
log_folder = log_file.parent

scheduler = CommitScheduler(
    repo_id = "finsight-qna",
    repo_type = "dataset",
    folder_path = log_folder,
    path_in_repo = "data",
    every = 2
)

# Define the Q&A system message
qna_system_message = """
You are an assistant to a financial technology firm who answers user queries on 10-K reports from various industry players which contain detailed information about financial performance, risk factors, market trends, and strategic initiatives.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.

When crafting your response,select the most relevant context or contexts to answer the question.

User questions will begin with the token: ###Question.

Please answer only using the context provided in the input. Do not mention anything about the context in your final answer.

If the answer is not found in the context, respond "I don't know".
"""

# Define the user message template
qna_user_message_template = """
###Context
Here are some documents that are relevant to the question mentioned below.-
{context}

###Question
{question}
"""

# Define the predict function that runs when 'Submit' is clicked or when an API request is made
def predict(user_input, company):
    filter = {"source": f"/content/dataset/{company}-10-k-2023.pdf"}
    relevant_document_chunks = vectorstore_persisted.similarity_search(user_input, k=5, filter=filter)
    
    # Create context_for_query
    context_list = [f"Page {doc.metadata['page']}: {doc.page_content}" for doc in relevant_document_chunks]
    context_for_query = ".".join(context_list)

    # Create messages
    prompt = [
        {'role': 'system', 'content': qna_system_message},
        {'role': 'user', 'content': qna_user_message_template.format(context=context_for_query, question=user_input)}
    ]

    # Get response from the LLM
    try:
        response = client.chat.completions.create(
            model="mlabonne/NeuralHermes-2.5-Mistral-7B",
            messages=prompt,
            temperature=0
        )
        prediction = response.choices[0].message.content
    except Exception as e:
        prediction = f'Sorry, I encountered the following error: \n {e}'

    print(prediction)

    # Log both the inputs and outputs to a local log file
    with scheduler.lock:
        with log_file.open("a") as f:
            f.write(json.dumps({
                'user_input': user_input,
                'retrieved_context': context_for_query,
                'model_response': prediction
            }))
            f.write("\n")

    return prediction

# Set-up the Gradio UI
# Add text box and radio button to the interface
# The radio button is used to select the company 10k report in which the context needs to be retrieved.
textbox = gr.Textbox(placeholder="Enter your query here")
company = gr.Radio(choices=["IBM", "META", "aws", "google", "msft"], label="Company")

# Create the interface
demo = gr.Interface(
    inputs=[textbox, company],
    fn=predict,
    outputs="text",
    description="This web API presents an interface to ask questions on contents of IBM, META, AWS, GOOGLE and MSFT 10-K reports for the year 2023",
    article="Note that questions that are not relevant to the aforementioned companies' 10-K reports will not be answered",
    title="Q&A for IBM, META, AWS, GOOG & MSFT 10-K Statements",
    examples=[
        ["Has the company made any significant acquisitions in the AI space, and how are these acquisitions being integrated into the company's strategy?", "IBM"],
        ["How much capital has been allocated towards AI research and development?", "META"],
        ["What initiatives has the company implemented to address ethical concerns surrounding AI, such as fairness, accountability, and privacy?", "aws"],
        ["How does the company plan to differentiate itself in the AI space relative to competitors?", "google"]
    ],
    concurrency_limit=16
)

demo.queue()
demo.launch(share=True, debug=False)