chienweichang
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import List
|
4 |
+
from transformers import AutoTokenizer, AutoModel
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
|
8 |
+
class EmbeddingModel:
|
9 |
+
def __init__(self, model_name="intfloat/multilingual-e5-large"):
|
10 |
+
cache_dir = os.getenv("MODEL_CACHE_DIR", "./model_cache")
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=cache_dir)
|
12 |
+
self.model = AutoModel.from_pretrained(model_name, cache_dir=cache_dir)
|
13 |
+
|
14 |
+
def get_embedding(self, text):
|
15 |
+
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = self.model(**inputs)
|
18 |
+
return outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
19 |
+
|
20 |
+
app = FastAPI()
|
21 |
+
embedding_model = EmbeddingModel()
|
22 |
+
|
23 |
+
class EmbeddingRequest(BaseModel):
|
24 |
+
input: List[str]
|
25 |
+
model: str = "intfloat/multilingual-e5-large"
|
26 |
+
|
27 |
+
class EmbeddingResponse(BaseModel):
|
28 |
+
object: str = "embedding"
|
29 |
+
data: List[dict]
|
30 |
+
model: str
|
31 |
+
usage: dict
|
32 |
+
|
33 |
+
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
|
34 |
+
async def create_embeddings(request: EmbeddingRequest):
|
35 |
+
if not request.input:
|
36 |
+
raise HTTPException(status_code=400, detail="Input text cannot be empty")
|
37 |
+
|
38 |
+
embeddings = []
|
39 |
+
for idx, text in enumerate(request.input):
|
40 |
+
embedding_vector = embedding_model.get_embedding(text).tolist()
|
41 |
+
embeddings.append({
|
42 |
+
"object": "embedding",
|
43 |
+
"embedding": embedding_vector,
|
44 |
+
"index": idx
|
45 |
+
})
|
46 |
+
|
47 |
+
response = EmbeddingResponse(
|
48 |
+
data=embeddings,
|
49 |
+
model=request.model,
|
50 |
+
usage={
|
51 |
+
"prompt_tokens": sum(len(text.split()) for text in request.input),
|
52 |
+
"total_tokens": sum(len(text.split()) for text in request.input)
|
53 |
+
}
|
54 |
+
)
|
55 |
+
return response
|