Spaces:
Sleeping
Sleeping
chienweichang
commited on
Commit
•
d118bab
1
Parent(s):
f4286ee
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,11 @@ from pydantic import BaseModel
|
|
3 |
from typing import List
|
4 |
from transformers import AutoTokenizer, AutoModel
|
5 |
import torch
|
6 |
-
import os
|
7 |
|
8 |
class EmbeddingModel:
|
9 |
def __init__(self, model_name="intfloat/multilingual-e5-large"):
|
10 |
-
|
11 |
-
self.
|
12 |
-
self.model = AutoModel.from_pretrained(model_name, cache_dir=cache_dir)
|
13 |
|
14 |
def get_embedding(self, text):
|
15 |
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
@@ -52,4 +50,4 @@ async def create_embeddings(request: EmbeddingRequest):
|
|
52 |
"total_tokens": sum(len(text.split()) for text in request.input)
|
53 |
}
|
54 |
)
|
55 |
-
return response
|
|
|
3 |
from typing import List
|
4 |
from transformers import AutoTokenizer, AutoModel
|
5 |
import torch
|
|
|
6 |
|
7 |
class EmbeddingModel:
|
8 |
def __init__(self, model_name="intfloat/multilingual-e5-large"):
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
self.model = AutoModel.from_pretrained(model_name)
|
|
|
11 |
|
12 |
def get_embedding(self, text):
|
13 |
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
50 |
"total_tokens": sum(len(text.split()) for text in request.input)
|
51 |
}
|
52 |
)
|
53 |
+
return response
|