File size: 8,987 Bytes
3b2a392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bae3ea
3b2a392
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""Demo gradio app for some text/query augmentation."""

from __future__ import annotations
from collections import defaultdict
import functools
from itertools import chain
from typing import Any, Callable, Mapping, Optional, Sequence, Tuple

import attr
import environ
import fasttext  # not working with python3.9
import gradio as gr
from transformers.pipelines import pipeline
from transformers.pipelines.base import Pipeline
from transformers.pipelines.token_classification import AggregationStrategy
from tokenizers.pre_tokenizers import Whitespace


def compose(*functions) -> Callable:
    """
    Compose functions.

        Args:
            functions: functions to compose.
        Returns:
            Composed functions.
    """

    def apply(f, g):
        return lambda x: f(g(x))

    return functools.reduce(apply, functions[::-1], lambda x: x)


def mapped(fn) -> Callable:
    """
    Decorator to apply map/filter to a function
    """

    def inner(func):
        partial_fn = functools.partial(fn, func)

        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            return partial_fn(*args, **kwargs)

        return wrapper

    return inner


@attr.frozen
class Prediction:
    """Dataclass to store prediction results."""

    label: str
    score: float


@attr.frozen
class Models:
    identification: Predictor
    translation: Predictor
    classification: Predictor
    ner: Predictor
    recipe: Predictor


@attr.frozen
class Predictor:
    load_fn: Callable
    predict_fn: Callable = attr.field(default=lambda model, query: model(query))
    model: Any = attr.field(init=False)

    def __attrs_post_init__(self):
        object.__setattr__(self, "model", self.load_fn())

    def __call__(self, *args: Any, **kwds: Any) -> Any:
        return self.predict_fn(self.model, *args, **kwds)


@environ.config(prefix="QUERY_INTERPRETATION")
class AppConfig:
    @environ.config
    class Identification:
        """Identification model configuration."""

        model = environ.var(default="./models/lid.176.ftz")
        max_results = environ.var(default=3, converter=int)

    @environ.config
    class Translation:
        """Translation models configuration."""

        model = environ.var(default="t5-small")
        sources = environ.var(default="de,fr")
        target = environ.var(default="en")

    @environ.config
    class Classification:
        """Classification model configuration."""

        model = environ.var(default="typeform/distilbert-base-uncased-mnli")
        max_results = environ.var(default=5, converter=int)

    @environ.config
    class NER:
        general = environ.var(default="Davlan/xlm-roberta-base-ner-hrl")
        recipe = environ.var(default="adamlin/recipe-tag-model")

    identification: Identification = environ.group(Identification)
    translation: Translation = environ.group(Translation)
    classification: Classification = environ.group(Classification)
    ner: NER = environ.group(NER)


def predict(
    models: Models,
    query: str,
    categories: Sequence[str],
    supported_languages: Tuple[str, ...] = ("fr", "de"),
) -> Tuple[
    Mapping[str, float],
    str,
    Mapping[str, float],
    Sequence[Tuple[str, Optional[str]]],
    Sequence[Tuple[str, Optional[str]]],
]:
    """Predict from a textual query:
    - the language
    - classify as a recipe or not
    - extract the recipe
    """

    def predict_lang(query) -> Mapping[str, float]:
        def predict_fn(query) -> Sequence[Prediction]:
            return tuple(
                Prediction(label=label, score=score)
                for label, score in zip(*models.identification(query, k=176))
            )

        @mapped(map)
        def format_label(prediction: Prediction) -> Prediction:
            return attr.evolve(
                prediction, label=prediction.label.replace("__label__", "")
            )

        def filter_labels(prediction: Prediction) -> bool:
            return prediction.label in supported_languages + ("en",)

        def format_output(predictions: Sequence[Prediction]) -> dict:
            return {pred.label: pred.score for pred in predictions}

        apply_fn = compose(
            predict_fn,
            format_label,
            functools.partial(filter, filter_labels),
            format_output,
        )
        return apply_fn(query)

    def translate_query(query: str, languages: Mapping[str, float]) -> str:
        def predicted_language() -> str:
            return max(languages.items(), key=lambda lang: lang[1])[0]

        def translate(query):
            lang = predicted_language()
            if lang in supported_languages:
                output = models.translation(query, lang)[0]["translation_text"]
            else:
                output = query

            return output

        return translate(query)

    def classify_query(query, categories) -> Mapping[str, float]:
        predictions = models.classification(query, categories)
        return dict(zip(predictions["labels"], predictions["scores"]))

    def extract_entities(
        predict_fn: Callable, query: str
    ) -> Sequence[Tuple[str, Optional[str]]]:
        def get_entity(pred: Mapping[str, str]):
            return pred.get("entity", pred.get("entity_group", None))

        mapping = defaultdict(lambda: None)
        mapping.update(**{pred["word"]: get_entity(pred) for pred in predict_fn(query)})

        query_processed = Whitespace().pre_tokenize_str(query)
        res = tuple(
            chain.from_iterable(
                ((word, mapping[word]), (" ", None)) for word, _ in query_processed
            )
        )
        return res

    languages = predict_lang(query)
    translation = translate_query(query, languages)
    classifications = classify_query(translation, categories)
    general_entities = extract_entities(models.ner, query)
    recipe_entities = extract_entities(models.recipe, translation)
    return languages, translation, classifications, general_entities, recipe_entities


def main():
    cfg: AppConfig = AppConfig.from_environ()

    def load_translation_models(
        sources: Sequence[str], target: str, models: Sequence[str]
    ) -> Pipeline:
        result = {
            src: pipeline(f"translation_{src}_to_{target}", models)
            for src, models in zip(sources, models)
        }
        return result

    def extract_commas_separated_values(value: str) -> Sequence[str]:
        return tuple(filter(None, value.split(",")))

    models = Models(
        identification=Predictor(
            load_fn=lambda: fasttext.load_model(cfg.identification.model),
            predict_fn=lambda model, query, k: model.predict(query, k=k),
        ),
        translation=Predictor(
            load_fn=functools.partial(
                load_translation_models,
                sources=extract_commas_separated_values(cfg.translation.sources),
                target=cfg.translation.target,
                models=["Helsinki-NLP/opus-mt-de-en", "Helsinki-NLP/opus-mt-fr-en"],
            ),
            predict_fn=lambda models, query, src: models[src](query),
        ),
        classification=Predictor(
            load_fn=lambda: pipeline(
                "zero-shot-classification", model=cfg.classification.model
            ),
            predict_fn=lambda model, query, categories: model(query, categories),
        ),
        ner=Predictor(
            load_fn=lambda: pipeline(
                "ner",
                model=cfg.ner.general,
                aggregation_strategy=AggregationStrategy.SIMPLE,
            ),
        ),
        recipe=Predictor(
            load_fn=lambda: pipeline("ner", model=cfg.ner.recipe),
        ),
    )

    iface = gr.Interface(
        fn=lambda query, categories: predict(
            models, query.strip(), extract_commas_separated_values(categories)
        ),
        examples=[["gateau au chocolat paris"], ["Newyork LA flight"]],
        inputs=[
            gr.inputs.Textbox(label="Query"),
            gr.inputs.Textbox(
                label="categories (commas separated and in english)",
                default="cooking and recipe,traveling,location,information,buy or sell",
            ),
        ],
        outputs=[
            gr.outputs.Label(
                num_top_classes=cfg.identification.max_results,
                type="auto",
                label="Language identification",
            ),
            gr.outputs.Textbox(
                label="English query",
                type="auto",
            ),
            gr.outputs.Label(
                num_top_classes=cfg.classification.max_results,
                type="auto",
                label="Predicted categories",
            ),
            gr.outputs.HighlightedText(label="NER generic"),
            gr.outputs.HighlightedText(label="NER Recipes"),
        ],
        interpretation="default",
    )

    iface.launch(debug=True)


if __name__ == "__main__":
    main()