Spaces:
Sleeping
Sleeping
File size: 5,983 Bytes
cc5b602 6f619d7 ae90620 6386510 677d853 51a7d9e 652620b 6386510 51a7d9e 652620b e6367a7 da0337e 51a7d9e 6386510 bd34f0b da0337e bd34f0b 51a7d9e 6386510 51a7d9e bd34f0b 51a7d9e da59244 652620b 7cb9567 652620b 0486bff b179e70 6b67af9 677d853 f77fb99 0486bff 4ed884e 3d7390f 4ed884e 652620b 4ed884e 652620b 3d7390f 652620b ce84a62 652620b c4592e6 4ed884e c4592e6 f77fb99 652620b 27dc368 652620b 51a7d9e 652620b 6386510 51a7d9e fed0852 51a7d9e 0486bff 51a7d9e 3d7390f da0337e 3d7390f 51a7d9e 4ed884e 51a7d9e 652620b 51a7d9e bd34f0b 4ed884e bd34f0b 4ed884e bd34f0b 51a7d9e 040bf4b 51a7d9e 652620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")
TITLE = "<h1><center>KissanAI - Dhenu2 India - Climate Resilient and Sustainable Agriculture Experimental Model</center></h1>"
PLACEHOLDER = """
<center>
<p>Hi, I'm Dhenu. Ask me anything about Climate Resilient and Sustainable Agriculture in India.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type= "nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
eos_token_id=[128001,128008,128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="gradio/soft") as demo:
gr.HTML(TITLE)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are an climate resilient and sustainable agriculture assistant in the context of India. Provide precise and actionable response in proper markdown format.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["What are the best drought-resistant crops for farmers in Rajasthan?"],
["How can I implement rainwater harvesting on my farm?"],
["What are the most effective soil conservation techniques for terraced fields?"],
["Which crop rotation practices can improve soil health in Punjab?"],
["How can I manage pest outbreaks using sustainable methods?"],
["What are the benefits of using biofertilizers in paddy cultivation?"],
["How can I optimize water usage for irrigation during the dry season?"],
["What are the recommended practices for organic farming in Karnataka?"],
["How can I protect my crops from unpredictable monsoon patterns?"],
["What are the best practices for integrating livestock with crop farming?"],
["How can agroforestry enhance the resilience of my farm?"],
["What sustainable techniques can reduce the impact of flooding on my crops?"],
["How can I use weather forecasting to plan my planting schedule?"],
["What are the advantages of using drip irrigation over traditional methods?"],
["How can I improve soil fertility without relying on chemical fertilizers?"],
["What are the key indicators of climate resilience in agriculture?"],
["How can I access government schemes for sustainable farming practices?"],
["What are the best methods for conserving biodiversity on my farm?"],
["How can I reduce greenhouse gas emissions from my agricultural activities?"],
["What technologies are available for monitoring crop health in real-time?"]
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |