Spaces:
Sleeping
Sleeping
File size: 4,884 Bytes
cc5b602 6f619d7 ae90620 6386510 677d853 51a7d9e 652620b 6386510 9660cc6 51a7d9e 652620b e6367a7 c3b4085 51a7d9e 6386510 bd34f0b 38f4825 bd34f0b 51a7d9e 6386510 51a7d9e bd34f0b 51a7d9e da59244 652620b 7cb9567 652620b 0486bff b179e70 6b67af9 677d853 f77fb99 0486bff 4ed884e 3d7390f 4ed884e 652620b 4ed884e 652620b 3d7390f 652620b ce84a62 652620b c4592e6 4ed884e c4592e6 f77fb99 652620b 27dc368 652620b 51a7d9e 652620b 6386510 51a7d9e fed0852 51a7d9e 0486bff 51a7d9e 3d7390f 0ee4a44 3d7390f 51a7d9e 4ed884e 51a7d9e 652620b 51a7d9e bd34f0b 4ed884e bd34f0b 4ed884e bd34f0b 51a7d9e 268e4f5 0ee4a44 51a7d9e 652620b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
MODEL_LIST = ["chheplo/Dhenu2-In-Llama3.1-8B-FFT"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID")
TITLE = "<h1><center>KissanAI - Dhenu2 India - Llama-3.1-8b-instruct</center></h1>"
PLACEHOLDER = """
<center>
<p>Hi, I'm Dhenu. Ask me anything about Agriculture in India.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type= "nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
eos_token_id=[128001,128008,128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="gradio/soft") as demo:
gr.HTML(TITLE)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Textbox(
value="You are an agriculture assistant in the context of India. Provide precise and actionable response in proper markdown format.",
label="System Prompt",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Which type of mango orchards in India require more frequent fruit thinning?"],
["How to control black pepper disease through the use of biological control agents in India?"],
["What are the different methods of hybrid seed production and their suitability for small-scale farmers in India?"],
["What are the government subsidies available for pulses farmers in Telangana?"],
["Suggested paddy varieties in Kerala and Karnataka."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |