|
from models import SynthesizerTrn |
|
from vits_pinyin import VITS_PinYin |
|
from text import cleaned_text_to_sequence |
|
from text.symbols import symbols |
|
import gradio as gr |
|
import utils |
|
import torch |
|
import argparse |
|
import os |
|
import re |
|
import logging |
|
|
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
def create_calback(net_g: SynthesizerTrn, tts_front: VITS_PinYin): |
|
def tts_calback(text, dur_scale): |
|
if limitation: |
|
text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) |
|
max_len = 150 |
|
if text_len > max_len: |
|
return "Error: Text is too long", None |
|
|
|
phonemes, char_embeds = tts_front.chinese_to_phonemes(text) |
|
input_ids = cleaned_text_to_sequence(phonemes) |
|
with torch.no_grad(): |
|
x_tst = torch.LongTensor(input_ids).unsqueeze(0).to(device) |
|
x_tst_lengths = torch.LongTensor([len(input_ids)]).to(device) |
|
x_tst_prosody = torch.FloatTensor( |
|
char_embeds).unsqueeze(0).to(device) |
|
audio = net_g.infer(x_tst, x_tst_lengths, x_tst_prosody, noise_scale=0.5, |
|
length_scale=dur_scale)[0][0, 0].data.cpu().float().numpy() |
|
del x_tst, x_tst_lengths, x_tst_prosody |
|
return "Success", (16000, audio) |
|
|
|
return tts_calback |
|
|
|
|
|
example = [['天空呈现的透心的蓝,像极了当年。总在这样的时候,透过窗棂,心,在天空里无尽的游弋!柔柔的,浓浓的,痴痴的风,牵引起心底灵动的思潮;情愫悠悠,思情绵绵,风里默坐,红尘中的浅醉,诗词中的优柔,任那自在飞花轻似梦的情怀,裁一束霓衣,织就清浅淡薄的安寂。', 1], |
|
['风的影子翻阅过淡蓝色的信笺,柔和的文字浅浅地漫过我安静的眸,一如几朵悠闲的云儿,忽而氤氲成汽,忽而修饰成花,铅华洗尽后的透彻和靓丽,爽爽朗朗,轻轻盈盈', 1], |
|
['时光仿佛有穿越到了从前,在你诗情画意的眼波中,在你舒适浪漫的暇思里,我如风中的思绪徜徉广阔天际,仿佛一片沾染了快乐的羽毛,在云环影绕颤动里浸润着风的呼吸,风的诗韵,那清新的耳语,那婉约的甜蜜,那恬淡的温馨,将一腔情澜染得愈发的缠绵。', 1],] |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", action="store_true", |
|
default=False, help="share gradio app") |
|
args = parser.parse_args() |
|
|
|
device = torch.device("cpu") |
|
|
|
|
|
tts_front = VITS_PinYin("./bert", device) |
|
|
|
|
|
hps = utils.get_hparams_from_file("./configs/bert_vits.json") |
|
|
|
|
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model) |
|
|
|
model_path = "vits_bert_model.pth" |
|
utils.load_model(model_path, net_g) |
|
net_g.eval() |
|
net_g.to(device) |
|
|
|
tts_calback = create_calback(net_g, tts_front) |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("# Best TTS based on BERT and VITS with some Natural Speech Features Of Microsoft\n\n" |
|
"code : github.com/PlayVoice/vits_chinese\n\n" |
|
"1, Hidden prosody embedding from BERT,get natural pauses in grammar\n\n" |
|
"2, Infer loss from NaturalSpeech,get less sound error\n\n" |
|
"3, Framework of VITS,get high audio quality\n\n" |
|
"<video id='video' controls='' preload='yes'>\n\n" |
|
"<source id='mp4' src='https://user-images.githubusercontent.com/16432329/220678182-4775dec8-9229-4578-870f-2eebc3a5d660.mp4' type='video/mp4'>\n\n" |
|
"</videos>\n\n" |
|
) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("TTS"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
textbox = gr.TextArea(label="Text", |
|
placeholder="Type your sentence here (Maximum 150 words)", |
|
value="中文语音合成", elem_id=f"tts-input") |
|
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, |
|
label='速度 Speed') |
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Message") |
|
audio_output = gr.Audio( |
|
label="Output Audio", elem_id="tts-audio") |
|
btn = gr.Button("Generate!") |
|
btn.click(tts_calback, |
|
inputs=[textbox, duration_slider], |
|
outputs=[text_output, audio_output]) |
|
gr.Examples( |
|
examples=example, |
|
inputs=[textbox, duration_slider], |
|
outputs=[text_output, audio_output], |
|
fn=tts_calback |
|
) |
|
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) |
|
|