File size: 8,528 Bytes
214ea91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os, sys
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
now_dir = os.getcwd()
sys.path.append(now_dir)
from tool.logger import get_logger
import ChatTTS
import argparse
import gradio as gr
from tool.func import *
from tool.ctx import TorchSeedContext
from tool.np import *
logger = get_logger("app")
# Initialize and load the model:
chat = ChatTTS.Chat()
def init_chat(args):
global chat
# 获取启动模式
MODEL = os.getenv('MODEL')
logger.info("loading ChatTTS model..., start MODEL:" + str(MODEL))
source = "custom"
# huggingface 部署模式下,模型则直接使用hf的模型数据
if MODEL == "HF":
source = "huggingface"
if chat.load(source=source, custom_path="D:\\chenjgspace\\ai-model\\chattts", coef=None):
print("Models loaded successfully.")
else:
print("Models load failed.")
sys.exit(1)
def main(args):
with gr.Blocks() as demo:
gr.Markdown("# ChatTTS demo")
with gr.Row():
with gr.Column(scale=1):
text_input = gr.Textbox(
label="转换内容",
lines=4,
max_lines=4,
placeholder="Please Input Text...",
value="柔柔的,浓浓的,痴痴的风,牵引起心底灵动的思潮;情愫悠悠,思情绵绵,风里默坐,红尘中的浅醉,诗词中的优柔,任那自在飞花轻似梦的情怀,裁一束霓衣,织就清浅淡薄的安寂。",
interactive=True,
)
with gr.Row():
refine_text_checkBox = gr.Checkbox(
label="是否优化文本,如是则先对文本内容做优化分词",
interactive=True,
value=True
)
temperature_slider = gr.Slider(
minimum=0.00001,
maximum=1.0,
step=0.00001,
value=0.3,
interactive=True,
label="模型 Temperature 参数设置"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=0.9,
step=0.05,
value=0.7,
label="模型 top_P 参数设置",
interactive=True,
)
top_k_slider = gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="模型 top_K 参数设置",
interactive=True,
)
with gr.Row():
voice_selection = gr.Dropdown(
label="Timbre",
choices=voices.keys(),
value="旁白",
interactive=True,
show_label=True
)
audio_seed_input = gr.Number(
value=2,
label="音色种子",
interactive=True,
minimum=seed_min,
maximum=seed_max,
)
generate_audio_seed = gr.Button("随机生成音色种子", interactive=True)
text_seed_input = gr.Number(
value=42,
label="文本种子",
interactive=True,
minimum=seed_min,
maximum=seed_max,
)
generate_text_seed = gr.Button("随机生成文本种子", interactive=True)
with gr.Row():
spk_emb_text = gr.Textbox(
label="Speaker Embedding",
max_lines=3,
show_copy_button=True,
interactive=False,
scale=2,
)
reload_chat_button = gr.Button("Reload", scale=1, interactive=True)
with gr.Row():
generate_button = gr.Button("生成音频文件", scale=1, interactive=True)
with gr.Row():
text_output = gr.Textbox(
label="输出文本",
interactive=False,
show_copy_button=True,
)
audio_output = gr.Audio(
label="输出音频",
value=None,
format="wav",
autoplay=False,
streaming=False,
interactive=False,
show_label=True,
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
)
# 针对页面元素新增 监听事件
voice_selection.change(fn=on_voice_change, inputs=voice_selection, outputs=audio_seed_input)
audio_seed_input.change(fn=on_audio_seed_change, inputs=audio_seed_input, outputs=spk_emb_text)
generate_audio_seed.click(fn=generate_seed, outputs=audio_seed_input)
generate_text_seed.click(fn=generate_seed,outputs=text_seed_input)
# reload_chat_button.click()
generate_button.click(fn=get_chat_infer_text,
inputs=[text_input,
text_seed_input,
refine_text_checkBox
],
outputs=[text_output]
).then(fn=get_chat_infer_audio,
inputs=[text_output,
temperature_slider,
top_p_slider,
top_k_slider,
audio_seed_input,
spk_emb_text
],
outputs=[audio_output])
# 初始化 spk_emb_text 数值
spk_emb_text.value = on_audio_seed_change(audio_seed_input.value)
logger.info("元素初始化完成,启动gradio服务=======")
# 运行gradio服务
demo.launch(
server_name=args.server_name,
server_port=args.server_port,
inbrowser=True,
show_api=False)
def get_chat_infer_audio(chat_txt,
temperature_slider,
top_p_slider,
top_k_slider,
audio_seed_input,
spk_emb_text):
logger.info("========开始生成音频文件=====")
#音频参数设置
params_infer_code = ChatTTS.Chat.InferCodeParams(
spk_emb=spk_emb_text, # add sampled speaker
temperature=temperature_slider, # using custom temperature
top_P=top_p_slider, # top P decode
top_K=top_k_slider, # top K decode
)
with TorchSeedContext(audio_seed_input):
wav = chat.infer(
text=chat_txt,
skip_refine_text=True, #跳过文本优化
params_infer_code=params_infer_code,
)
yield 24000, float_to_int16(wav[0]).T
def get_chat_infer_text(text,seed,refine_text_checkBox):
logger.info("========开始优化文本内容=====")
global chat
if not refine_text_checkBox:
logger.info("========文本内容无需优化=====")
return text
params_refine_text = ChatTTS.Chat.RefineTextParams(
prompt='[oral_2][laugh_0][break_6]',
)
with TorchSeedContext(seed):
chat_text = chat.infer(
text=text,
skip_refine_text=False,
refine_text_only=True, #仅返回优化后文本内容
params_refine_text=params_refine_text,
)
return chat_text[0] if isinstance(chat_text, list) else chat_text
def on_audio_seed_change(audio_seed_input):
global chat
with TorchSeedContext(audio_seed_input):
rand_spk = chat.sample_random_speaker()
return rand_spk
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ChatTTS demo Launch")
parser.add_argument(
"--server_name", type=str, default="0.0.0.0", help="server name"
)
parser.add_argument("--server_port", type=int, default=8080, help="server port")
parser.add_argument(
"--custom_path", type=str, default="D:\\chenjgspace\\ai-model\\chattts", help="custom model path"
)
parser.add_argument(
"--coef", type=str, default=None, help="custom dvae coefficient"
)
args = parser.parse_args()
init_chat(args)
main(args)
|