File size: 8,528 Bytes
214ea91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os, sys

if sys.platform == "darwin":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

now_dir = os.getcwd()
sys.path.append(now_dir)

from tool.logger import get_logger
import ChatTTS
import argparse
import gradio as gr
from tool.func import *
from tool.ctx import TorchSeedContext
from tool.np import *

logger = get_logger("app")

# Initialize and load the model:
chat = ChatTTS.Chat()


def init_chat(args):
    global chat
    # 获取启动模式
    MODEL = os.getenv('MODEL')
    logger.info("loading ChatTTS model..., start MODEL:" + str(MODEL))
    source = "custom"
    # huggingface 部署模式下,模型则直接使用hf的模型数据
    if MODEL == "HF":
        source = "huggingface"

    if chat.load(source=source, custom_path="D:\\chenjgspace\\ai-model\\chattts", coef=None):
        print("Models loaded successfully.")
    else:
        print("Models load failed.")
        sys.exit(1)


def main(args):
    with gr.Blocks() as demo:
        gr.Markdown("# ChatTTS demo")
        with gr.Row():
            with gr.Column(scale=1):
                text_input = gr.Textbox(
                    label="转换内容",
                    lines=4,
                    max_lines=4,
                    placeholder="Please Input Text...",
                    value="柔柔的,浓浓的,痴痴的风,牵引起心底灵动的思潮;情愫悠悠,思情绵绵,风里默坐,红尘中的浅醉,诗词中的优柔,任那自在飞花轻似梦的情怀,裁一束霓衣,织就清浅淡薄的安寂。",
                    interactive=True,
                )
        with gr.Row():
            refine_text_checkBox = gr.Checkbox(
                label="是否优化文本,如是则先对文本内容做优化分词",
                interactive=True,
                value=True
            )
            temperature_slider = gr.Slider(
                minimum=0.00001,
                maximum=1.0,
                step=0.00001,
                value=0.3,
                interactive=True,
                label="模型 Temperature 参数设置"
            )
            top_p_slider = gr.Slider(
                minimum=0.1,
                maximum=0.9,
                step=0.05,
                value=0.7,
                label="模型 top_P 参数设置",
                interactive=True,
            )
            top_k_slider = gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="模型 top_K 参数设置",
                interactive=True,
            )
        with gr.Row():
            voice_selection = gr.Dropdown(
                label="Timbre",
                choices=voices.keys(),
                value="旁白",
                interactive=True,
                show_label=True
            )
            audio_seed_input = gr.Number(
                value=2,
                label="音色种子",
                interactive=True,
                minimum=seed_min,
                maximum=seed_max,
            )
            generate_audio_seed = gr.Button("随机生成音色种子", interactive=True)
            text_seed_input = gr.Number(
                value=42,
                label="文本种子",
                interactive=True,
                minimum=seed_min,
                maximum=seed_max,
            )
            generate_text_seed = gr.Button("随机生成文本种子", interactive=True)

        with gr.Row():
            spk_emb_text = gr.Textbox(
                label="Speaker Embedding",
                max_lines=3,
                show_copy_button=True,
                interactive=False,
                scale=2,

            )
            reload_chat_button = gr.Button("Reload", scale=1, interactive=True)

        with gr.Row():
            generate_button = gr.Button("生成音频文件", scale=1, interactive=True)

        with gr.Row():
            text_output = gr.Textbox(
                label="输出文本",
                interactive=False,
                show_copy_button=True,
            )

            audio_output = gr.Audio(
                label="输出音频",
                value=None,
                format="wav",
                autoplay=False,
                streaming=False,
                interactive=False,
                show_label=True,
                waveform_options=gr.WaveformOptions(
                    sample_rate=24000,
                ),
            )
        # 针对页面元素新增 监听事件
        voice_selection.change(fn=on_voice_change, inputs=voice_selection, outputs=audio_seed_input)

        audio_seed_input.change(fn=on_audio_seed_change, inputs=audio_seed_input, outputs=spk_emb_text)

        generate_audio_seed.click(fn=generate_seed, outputs=audio_seed_input)

        generate_text_seed.click(fn=generate_seed,outputs=text_seed_input)

        # reload_chat_button.click()

        generate_button.click(fn=get_chat_infer_text,
                              inputs=[text_input,
                                                       text_seed_input,
                                                       refine_text_checkBox
                                                       ],
                              outputs=[text_output]
                              ).then(fn=get_chat_infer_audio,
                                     inputs=[text_output,
                                                       temperature_slider,
                                                       top_p_slider,
                                                       top_k_slider,
                                                       audio_seed_input,
                                                       spk_emb_text
                                                       ],
                                     outputs=[audio_output])
        # 初始化 spk_emb_text 数值
        spk_emb_text.value = on_audio_seed_change(audio_seed_input.value)
        logger.info("元素初始化完成,启动gradio服务=======")

        # 运行gradio服务
        demo.launch(
            server_name=args.server_name,
            server_port=args.server_port,
            inbrowser=True,
            show_api=False)



def get_chat_infer_audio(chat_txt,
                 temperature_slider,
                 top_p_slider,
                 top_k_slider,
                 audio_seed_input,
                 spk_emb_text):
    logger.info("========开始生成音频文件=====")
    #音频参数设置
    params_infer_code = ChatTTS.Chat.InferCodeParams(
        spk_emb=spk_emb_text,  # add sampled speaker
        temperature=temperature_slider,  # using custom temperature
        top_P=top_p_slider,  # top P decode
        top_K=top_k_slider,  # top K decode
    )

    with TorchSeedContext(audio_seed_input):
        wav = chat.infer(
            text=chat_txt,
            skip_refine_text=True, #跳过文本优化
            params_infer_code=params_infer_code,
        )
        yield 24000, float_to_int16(wav[0]).T

def get_chat_infer_text(text,seed,refine_text_checkBox):

    logger.info("========开始优化文本内容=====")
    global chat
    if not refine_text_checkBox:
        logger.info("========文本内容无需优化=====")
        return  text

    params_refine_text = ChatTTS.Chat.RefineTextParams(
        prompt='[oral_2][laugh_0][break_6]',
    )

    with TorchSeedContext(seed):
        chat_text = chat.infer(
            text=text,
            skip_refine_text=False,
            refine_text_only=True,  #仅返回优化后文本内容
            params_refine_text=params_refine_text,
        )

    return chat_text[0] if isinstance(chat_text, list) else chat_text

def on_audio_seed_change(audio_seed_input):
    global chat
    with TorchSeedContext(audio_seed_input):
        rand_spk = chat.sample_random_speaker()
    return rand_spk


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="ChatTTS demo Launch")
    parser.add_argument(
        "--server_name", type=str, default="0.0.0.0", help="server name"
    )
    parser.add_argument("--server_port", type=int, default=8080, help="server port")
    parser.add_argument(
        "--custom_path", type=str, default="D:\\chenjgspace\\ai-model\\chattts", help="custom model path"
    )
    parser.add_argument(
        "--coef", type=str, default=None, help="custom dvae coefficient"
    )
    args = parser.parse_args()
    init_chat(args)
    main(args)