stable-text-to-motion-framework / utils /evaluation_perturbation.py
Xhr0306's picture
update
15fa80a
raw
history blame
4.24 kB
import os
os.chdir('/root/autodl-tmp/t2m/T2M-GPT-main')
import torch
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from os.path import join as pjoin
from torch.distributions import Categorical
import json
import clip
from attack import PGDAttacker
import options.option_transformer as option_trans
import models.vqvae as vqvae
import utils.utils_model as utils_model
import eval_trans_per as eval_trans
from dataset import dataset_TM_train
from dataset import dataset_TM_eval
from dataset import dataset_tokenize
from metrics import batch_tvd,topk_overlap_loss,topK_overlap_true_loss
import models.t2m_trans as trans
from options.get_eval_option import get_opt
from models.evaluator_wrapper import EvaluatorModelWrapper
import warnings
from utils.word_vectorizer import WordVectorizer
from utils.losses import loss_robust
import wandb
warnings.filterwarnings('ignore')
##### ---- Exp dirs ---- #####
args = option_trans.get_args_parser()
torch.manual_seed(args.seed)
args.out_dir = os.path.join(args.out_dir, f'{args.exp_name}')
args.vq_dir= os.path.join("./dataset/KIT-ML" if args.dataname == 'kit' else "./dataset/HumanML3D", f'{args.vq_name}')
os.makedirs(args.out_dir, exist_ok = True)
os.makedirs(args.vq_dir, exist_ok = True)
##### ---- Logger ---- #####
logger = utils_model.get_logger(args.out_dir)
writer = SummaryWriter(args.out_dir)
logger.info(json.dumps(vars(args), indent=4, sort_keys=True))
##### ---- Dataloader ---- #####
w_vectorizer = WordVectorizer('./glove', 'our_vab')
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
test_loader = dataset_TM_eval.DATALoader(args.dataname, True, 32, w_vectorizer)
dataset_opt_path = 'checkpoints/kit/Comp_v6_KLD005/opt.txt' if args.dataname == 'kit' else 'checkpoints/t2m/Comp_v6_KLD005/opt.txt'
wrapper_opt = get_opt(dataset_opt_path, torch.device('cuda'))
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
##### ---- Network ---- #####
clip_model, clip_preprocess = clip.load("ViT-B/32", device=torch.device('cuda'), jit=False) # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder =trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=args.embed_dim_gpt,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=args.num_layers,
n_head=args.n_head_gpt,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print ('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
net.cuda()
if args.resume_trans is not None:
print ('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.eval()
trans_encoder.cuda()
print('loading chechpoint successfully!')
best_fid=1000.0,
best_fid_per=1000.0
best_iter=0.0,
best_div=100.0
best_top1=0.0
best_top2=0.0
best_top3=0.0
best_matching=100.0
best_fid, best_fid_per,best_iter, best_div, best_top1, best_top2, best_top3, best_matching, writer, logger = eval_trans.evaluation_transformer_test(args.out_dir, val_loader, net, trans_encoder, logger, writer, nb_iter, best_fid,best_fid_per, best_iter, best_div, best_top1, best_top2, best_top3, best_matching, clip_model=clip_model, eval_wrapper=eval_wrapper)