Xhr0306's picture
update
15fa80a
import torch
from torch.utils import data
import numpy as np
from os.path import join as pjoin
import random
import codecs as cs
from tqdm import tqdm
class VQMotionDataset(data.Dataset):
def __init__(self, dataset_name, window_size = 64, unit_length = 4):
self.window_size = window_size
self.unit_length = unit_length
self.dataset_name = dataset_name
if dataset_name == 't2m':
self.data_root = './dataset/HumanML3D'
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
self.text_dir = pjoin(self.data_root, 'texts')
self.joints_num = 22
self.max_motion_length = 196
self.meta_dir = 'checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
elif dataset_name == 'kit':
self.data_root = './dataset/KIT-ML'
self.motion_dir = pjoin(self.data_root, 'new_joint_vecs')
self.text_dir = pjoin(self.data_root, 'texts')
self.joints_num = 21
self.max_motion_length = 196
self.meta_dir = 'checkpoints/kit/VQVAEV3_CB1024_CMT_H1024_NRES3/meta'
joints_num = self.joints_num
mean = np.load(pjoin(self.meta_dir, 'mean.npy'))
std = np.load(pjoin(self.meta_dir, 'std.npy'))
split_file = pjoin(self.data_root, 'train.txt')
self.data = []
self.lengths = []
id_list = []
with cs.open(split_file, 'r') as f:
for line in f.readlines():
id_list.append(line.strip())
for name in tqdm(id_list):
try:
motion = np.load(pjoin(self.motion_dir, name + '.npy'))
if motion.shape[0] < self.window_size:
continue
self.lengths.append(motion.shape[0] - self.window_size)
self.data.append(motion)
except:
# Some motion may not exist in KIT dataset
pass
self.mean = mean
self.std = std
print("Total number of motions {}".format(len(self.data)))
def inv_transform(self, data):
return data * self.std + self.mean
def compute_sampling_prob(self) :
prob = np.array(self.lengths, dtype=np.float32)
prob /= np.sum(prob)
return prob
def __len__(self):
return len(self.data)
def __getitem__(self, item):
motion = self.data[item]
idx = random.randint(0, len(motion) - self.window_size)
motion = motion[idx:idx+self.window_size]
"Z Normalization"
motion = (motion - self.mean) / self.std
return motion
def DATALoader(dataset_name,
batch_size,
num_workers = 8,
window_size = 64,
unit_length = 4):
trainSet = VQMotionDataset(dataset_name, window_size=window_size, unit_length=unit_length)
prob = trainSet.compute_sampling_prob()
sampler = torch.utils.data.WeightedRandomSampler(prob, num_samples = len(trainSet) * 1000, replacement=True)
train_loader = torch.utils.data.DataLoader(trainSet,
batch_size,
shuffle=True,
#sampler=sampler,
num_workers=num_workers,
#collate_fn=collate_fn,
drop_last = True)
return train_loader
def cycle(iterable):
while True:
for x in iterable:
yield x