Spaces:
Runtime error
Runtime error
File size: 14,130 Bytes
4275cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class QuantizeEMAReset(nn.Module):
def __init__(self, nb_code, code_dim, args):
super().__init__()
self.nb_code = nb_code
self.code_dim = code_dim
self.mu = args.mu
self.reset_codebook()
def reset_codebook(self):
self.init = False
self.code_sum = None
self.code_count = None
if torch.cuda.is_available():
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
else:
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim))
def _tile(self, x):
nb_code_x, code_dim = x.shape
if nb_code_x < self.nb_code:
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
std = 0.01 / np.sqrt(code_dim)
out = x.repeat(n_repeats, 1)
out = out + torch.randn_like(out) * std
else :
out = x
return out
def init_codebook(self, x):
out = self._tile(x)
self.codebook = out[:self.nb_code]
self.code_sum = self.codebook.clone()
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
self.init = True
@torch.no_grad()
def compute_perplexity(self, code_idx) :
# Calculate new centres
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
code_count = code_onehot.sum(dim=-1) # nb_code
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
@torch.no_grad()
def update_codebook(self, x, code_idx):
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
code_sum = torch.matmul(code_onehot, x) # nb_code, w
code_count = code_onehot.sum(dim=-1) # nb_code
out = self._tile(x)
code_rand = out[:self.nb_code]
# Update centres
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
self.codebook = usage * code_update + (1 - usage) * code_rand
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def preprocess(self, x):
# NCT -> NTC -> [NT, C]
x = x.permute(0, 2, 1).contiguous()
x = x.view(-1, x.shape[-1])
return x
def quantize(self, x):
# Calculate latent code x_l
k_w = self.codebook.t()
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
keepdim=True) # (N * L, b)
_, code_idx = torch.min(distance, dim=-1)
return code_idx
def dequantize(self, code_idx):
x = F.embedding(code_idx, self.codebook)
return x
def forward(self, x):
N, width, T = x.shape
# Preprocess
x = self.preprocess(x)
# Init codebook if not inited
if self.training and not self.init:
self.init_codebook(x)
# quantize and dequantize through bottleneck
code_idx = self.quantize(x)
x_d = self.dequantize(code_idx)
# Update embeddings
if self.training:
perplexity = self.update_codebook(x, code_idx)
else :
perplexity = self.compute_perplexity(code_idx)
# Loss
commit_loss = F.mse_loss(x, x_d.detach())
# Passthrough
x_d = x + (x_d - x).detach()
# Postprocess
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
return x_d, commit_loss, perplexity
class Quantizer(nn.Module):
def __init__(self, n_e, e_dim, beta):
super(Quantizer, self).__init__()
self.e_dim = e_dim
self.n_e = n_e
self.beta = beta
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
def forward(self, z):
N, width, T = z.shape
z = self.preprocess(z)
assert z.shape[-1] == self.e_dim
z_flattened = z.contiguous().view(-1, self.e_dim)
# B x V
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.matmul(z_flattened, self.embedding.weight.t())
# B x 1
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
# compute loss for embedding
loss = torch.mean((z_q - z.detach())**2) + self.beta * \
torch.mean((z_q.detach() - z)**2)
# preserve gradients
z_q = z + (z_q - z).detach()
z_q = z_q.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
e_mean = torch.mean(min_encodings, dim=0)
perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10)))
return z_q, loss, perplexity
def quantize(self, z):
assert z.shape[-1] == self.e_dim
# B x V
d = torch.sum(z ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
torch.matmul(z, self.embedding.weight.t())
# B x 1
min_encoding_indices = torch.argmin(d, dim=1)
return min_encoding_indices
def dequantize(self, indices):
index_flattened = indices.view(-1)
z_q = self.embedding(index_flattened)
z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous()
return z_q
def preprocess(self, x):
# NCT -> NTC -> [NT, C]
x = x.permute(0, 2, 1).contiguous()
x = x.view(-1, x.shape[-1])
return x
class QuantizeReset(nn.Module):
def __init__(self, nb_code, code_dim, args):
super().__init__()
self.nb_code = nb_code
self.code_dim = code_dim
self.reset_codebook()
self.codebook = nn.Parameter(torch.randn(nb_code, code_dim))
def reset_codebook(self):
self.init = False
self.code_count = None
def _tile(self, x):
nb_code_x, code_dim = x.shape
if nb_code_x < self.nb_code:
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
std = 0.01 / np.sqrt(code_dim)
out = x.repeat(n_repeats, 1)
out = out + torch.randn_like(out) * std
else :
out = x
return out
def init_codebook(self, x):
out = self._tile(x)
self.codebook = nn.Parameter(out[:self.nb_code])
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
self.init = True
@torch.no_grad()
def compute_perplexity(self, code_idx) :
# Calculate new centres
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
code_count = code_onehot.sum(dim=-1) # nb_code
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def update_codebook(self, x, code_idx):
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
code_count = code_onehot.sum(dim=-1) # nb_code
out = self._tile(x)
code_rand = out[:self.nb_code]
# Update centres
self.code_count = code_count # nb_code
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
self.codebook.data = usage * self.codebook.data + (1 - usage) * code_rand
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def preprocess(self, x):
# NCT -> NTC -> [NT, C]
x = x.permute(0, 2, 1).contiguous()
x = x.view(-1, x.shape[-1])
return x
def quantize(self, x):
# Calculate latent code x_l
k_w = self.codebook.t()
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
keepdim=True) # (N * L, b)
_, code_idx = torch.min(distance, dim=-1)
return code_idx
def dequantize(self, code_idx):
x = F.embedding(code_idx, self.codebook)
return x
def forward(self, x):
N, width, T = x.shape
# Preprocess
x = self.preprocess(x)
# Init codebook if not inited
if self.training and not self.init:
self.init_codebook(x)
# quantize and dequantize through bottleneck
code_idx = self.quantize(x)
x_d = self.dequantize(code_idx)
# Update embeddings
if self.training:
perplexity = self.update_codebook(x, code_idx)
else :
perplexity = self.compute_perplexity(code_idx)
# Loss
commit_loss = F.mse_loss(x, x_d.detach())
# Passthrough
x_d = x + (x_d - x).detach()
# Postprocess
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
return x_d, commit_loss, perplexity
class QuantizeEMA(nn.Module):
def __init__(self, nb_code, code_dim, args):
super().__init__()
self.nb_code = nb_code
self.code_dim = code_dim
self.mu = 0.99
self.reset_codebook()
def reset_codebook(self):
self.init = False
self.code_sum = None
self.code_count = None
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
def _tile(self, x):
nb_code_x, code_dim = x.shape
if nb_code_x < self.nb_code:
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
std = 0.01 / np.sqrt(code_dim)
out = x.repeat(n_repeats, 1)
out = out + torch.randn_like(out) * std
else :
out = x
return out
def init_codebook(self, x):
out = self._tile(x)
self.codebook = out[:self.nb_code]
self.code_sum = self.codebook.clone()
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
self.init = True
@torch.no_grad()
def compute_perplexity(self, code_idx) :
# Calculate new centres
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
code_count = code_onehot.sum(dim=-1) # nb_code
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
@torch.no_grad()
def update_codebook(self, x, code_idx):
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
code_sum = torch.matmul(code_onehot, x) # nb_code, w
code_count = code_onehot.sum(dim=-1) # nb_code
# Update centres
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
self.codebook = code_update
prob = code_count / torch.sum(code_count)
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
return perplexity
def preprocess(self, x):
# NCT -> NTC -> [NT, C]
x = x.permute(0, 2, 1).contiguous()
x = x.view(-1, x.shape[-1])
return x
def quantize(self, x):
# Calculate latent code x_l
k_w = self.codebook.t()
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
keepdim=True) # (N * L, b)
_, code_idx = torch.min(distance, dim=-1)
return code_idx
def dequantize(self, code_idx):
x = F.embedding(code_idx, self.codebook)
return x
def forward(self, x):
N, width, T = x.shape
# Preprocess
x = self.preprocess(x)
# Init codebook if not inited
if self.training and not self.init:
self.init_codebook(x)
# quantize and dequantize through bottleneck
code_idx = self.quantize(x)
x_d = self.dequantize(code_idx)
# Update embeddings
if self.training:
perplexity = self.update_codebook(x, code_idx)
else :
perplexity = self.compute_perplexity(code_idx)
# Loss
commit_loss = F.mse_loss(x, x_d.detach())
# Passthrough
x_d = x + (x_d - x).detach()
# Postprocess
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
return x_d, commit_loss, perplexity |