File size: 5,242 Bytes
0198505
a20001f
8518918
 
 
a20001f
8518918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afc3372
 
 
8518918
 
cf5b520
 
b6be546
8518918
cf5b520
8518918
 
cf5b520
 
442a3b7
8518918
cf5b520
afc3372
cf5b520
 
8518918
 
a20001f
8518918
afc3372
8518918
 
 
 
 
 
 
 
 
 
afc3372
8518918
 
 
 
 
f845b05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae15986
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import pandas as pd
from Prediction import *
import os
from datetime import datetime


examples = []
if os.path.exists("assets/examples.txt"):
    with open("assets/examples.txt", "r", encoding="utf8") as file:
        for sentence in file:
            sentence = sentence.strip()
            examples.append(sentence)
else:
    examples = [
        "Games of the imagination teach us actions have consequences in a realm that can be reset.",
        "But New Jersey farmers are retiring and all over the state, development continues to push out dwindling farmland.",
        "He also is the Head Designer of The Design Trust so-to-speak, besides his regular job ..."
        ]

device = torch.device('cpu')
tokenizer = BertTokenizer.from_pretrained("Oliver12315/Brand_Tone_of_Voice")
model = BertForSequenceClassification.from_pretrained("Oliver12315/Brand_Tone_of_Voice")
model = model.to(device)


def single_sentence(sentence):
    predictions = predict_single(sentence, tokenizer, model, device)
    return sorted(zip(LABEL_COLUMNS, predictions), key=lambda x:x[-1], reverse=True)

def csv_process(csv_file, attr="content"):
    current_time = datetime.now()
    formatted_time = current_time.strftime("%Y_%m_%d_%H_%M_%S")
    data = pd.read_csv(csv_file.name)
    data = data.reset_index()
    os.makedirs('output', exist_ok=True)
    outputs = []
    predictions = predict_csv(data, attr, tokenizer, model, device)
    output_path = f"output/prediction_Brand_Tone_of_Voice_{formatted_time}.csv"
    predictions.to_csv(output_path)
    outputs.append(output_path)
    return outputs


my_theme = gr.Theme.from_hub("JohnSmith9982/small_and_pretty")
with gr.Blocks(theme=my_theme, title='Brand_Tone_of_Voice_demo') as demo:
    gr.HTML(
        """
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
        <a href="https://github.com/xxx" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
        </a>
        <div>
            <h1 >Place the title of the paper here</h1>
            <h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;>
                <a href="https://arxiv.org/abs/xx.xx"><img src="https://img.shields.io/badge/Arxiv-xx.xx-red"></a>
                <a href='https://huggingface.co/spaces/Oliver12315/Brand_Tone_of_Voice_demo'><img src='https://img.shields.io/badge/Project_Page-Oliver12315/Brand_Tone_of_Voice_demo' alt='Project Page'></a>
                <a href='https://github.com'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
            </div>
        </div>
        </div>
        """)
    
    with gr.Tab("Readme"):
        gr.Markdown("""
            # Detailed information about our model:
                    
            The example model here is a tone classification model suitable for financial field texts.

            # Paper Name
                    
            # Authors

            + First author
            + Corresponding author

            # How to use?
                    
            Please refer to the other two tab card for predictions.
                    
            + The `Single Sentence` for the tone classification of individual sentence.
            + The `CSV File` for inputting CSV file for batch prediction and return.
            ...
            """)

    with gr.Tab("Single Sentence"):
        tbox_input = gr.Textbox(label="Input",
                                    info="Please input a sentence here:")

        tab_output = gr.DataFrame(label='Predictions:', 
                                  headers=["Category", "Probability"],
                                  datatype=["str", "number"],
                                  interactive=False)
        with gr.Row():
            button_ss = gr.Button("Submit", variant="primary")
            button_ss.click(fn=single_sentence, inputs=[tbox_input], outputs=[tab_output])
            gr.ClearButton([tbox_input, tab_output])

        gr.Examples(
            examples=examples,
            inputs=tbox_input,
            examples_per_page=len(examples)
        )

    with gr.Tab("Csv File"):
        with gr.Row():
            csv_input = gr.File(label="CSV File:",
                                file_types=['.csv'],
                                file_count="single"
                                )
            csv_output = gr.File(label="Predictions:")

        with gr.Row():
            button = gr.Button("Submit", variant="primary")
            button.click(fn=csv_process, inputs=[csv_input], outputs=[csv_output])
            gr.ClearButton([csv_input, csv_output])

        gr.Markdown("## Examples \n The incoming CSV must include the ``content`` field, which represents the text that needs to be predicted!")
        gr.DataFrame(label='Csv input format:',
                    value=[[i, examples[i]] for i in range(len(examples))],
                    headers=["index", "content"],
                    datatype=["number","str"],
                    interactive=False
                    )
demo.launch()