Spaces:
Sleeping
Sleeping
import cv2 | |
import streamlit as st | |
from fer import FER | |
from PIL import Image | |
import numpy as np | |
# Initialize emotion detector | |
emotion_detector = FER() | |
# Function to process image and detect emotions | |
def process_image(image): | |
frame = np.array(image) | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) # Convert from PIL to OpenCV format | |
emotions = emotion_detector.detect_emotions(frame) | |
blurred_frame = cv2.GaussianBlur(frame, (51, 51), 0) | |
for face in emotions: | |
(x, y, w, h) = face["box"] | |
emotion, score = max(face["emotions"].items(), key=lambda item: item[1]) | |
overlay = frame.copy() | |
alpha = 0.4 | |
cv2.rectangle(overlay, (x, y), (x + w, y + h), (0, 255, 0), 2) | |
cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0, frame) | |
blurred_frame[y:y + h, x:x + w] = frame[y:y + h, x:x + w] | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
font_scale = 0.7 | |
font_thickness = 2 | |
text_color = (255, 255, 255) | |
bg_color = (0, 0, 0) | |
text = f"{emotion}: {score:.2f}" | |
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, font_thickness) | |
text_x = x + 10 | |
text_y = y - 10 if y - 10 > text_height else y + h + text_height | |
cv2.rectangle(blurred_frame, (text_x - 5, text_y - text_height - 5), (text_x + text_width + 5, text_y + 5), bg_color, -1) | |
cv2.putText(blurred_frame, text, (text_x, text_y), font, font_scale, text_color, font_thickness) | |
return cv2.cvtColor(blurred_frame, cv2.COLOR_BGR2RGB) # Convert back to RGB for Streamlit | |
# Streamlit UI | |
st.title("Real-Time Emotion Recognition") | |
st.write("Use the camera or upload an image to detect emotions.") | |
# Camera Input | |
camera_image = st.camera_input("Take a picture") | |
# File Upload | |
uploaded_file = st.file_uploader("Or upload an image...", type=["jpg", "png", "jpeg"]) | |
# Process image if uploaded or captured via camera | |
if camera_image or uploaded_file: | |
image = Image.open(camera_image if camera_image else uploaded_file) | |
st.image(image, caption="Captured Image", use_column_width=True) | |
processed_image = process_image(image) | |
st.image(processed_image, caption="Processed Image with Emotions", use_column_width=True) | |