Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,824 Bytes
97162c6 599de6f 97162c6 599de6f 97162c6 fc5ba66 97162c6 96952d7 97162c6 96952d7 97162c6 96952d7 97162c6 31fe0f3 96952d7 ecc3aab 31fe0f3 97162c6 85c1ad8 97162c6 ac51d3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import onnxruntime as ort
from huggingface_hub import hf_hub_download
import requests
import os
import gradio as gr
import spaces
from typing import Any, List, Callable
import cv2
import insightface
import time
import tempfile
import subprocess
import gfpgan
print("instaling cudnn 9")
import subprocess
import sys
def get_pip_version(package_name):
try:
result = subprocess.run(
[sys.executable, '-m', 'pip', 'show', package_name],
capture_output=True,
text=True,
check=True
)
output = result.stdout
version_line = next(line for line in output.split('\n') if line.startswith('Version:'))
return version_line.split(': ')[1]
except subprocess.CalledProcessError as e:
print(f"Erro ao executar o comando: {e}")
return None
package_name = 'nvidia-cudnn-cu12'
version = get_pip_version(package_name)
print(f"A versão instalada de {package_name} é: {version}")
command = "find / -path /proc -prune -o -path /sys -prune -o -name 'libcudnn*' -print"
process = subprocess.run(command, shell=True, text=True, capture_output=True)
if process.returncode == 0:
print("Resultados da busca:\n", process.stdout)
else:
print("Houve um erro na execução do comando:", process.stderr)
source_path = '/usr/local/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12'
destination_path = '/usr/local/lib/python3.10/site-packages/nvidia/cudnn/lib/'
command = ['mv', source_path, destination_path]
subprocess.run(command, check=True)
command = ['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cublas/lib/libcublas.so.12", destination_path]
subprocess.run(command, check=True)
command = ['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cufft/lib/libcufft.so.11", destination_path]
subprocess.run(command, check=True)
command = ['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11", destination_path]
subprocess.run(command, check=True)
command = ['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cuda_runtime/lib/libcudart.so.12", destination_path]
subprocess.run(command, check=True)
command = ['mv', "/usr/local/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12", destination_path]
subprocess.run(command, check=True)
command = ['cp', "/usr/local/lib/python3.10/site-packages/nvidia/curand/lib/libcurand.so.10", destination_path]
subprocess.run(command, check=True)
command = ['cp', "/usr/local/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolver.so.11", destination_path]
subprocess.run(command, check=True)
command = ['cp', "/usr/local/lib/python3.10/site-packages/nvidia/cusolver/lib/libcusolverMg.so.11", destination_path]
subprocess.run(command, check=True)
command = ['cp', "/usr/local/lib/python3.10/site-packages/nvidia/cusparse/lib/libcusparse.so.12", destination_path]
subprocess.run(command, check=True)
command = "find / -path /proc -prune -o -path /sys -prune -o -name 'libcu*' -print"
process = subprocess.run(command, shell=True, text=True, capture_output=True)
if process.returncode == 0:
print("Resultados da busca:\n", process.stdout)
else:
print("Houve um erro na execução do comando:", process.stderr)
print("done")
print("---------------------")
print(ort.get_available_providers())
def conditional_download(download_directory_path, urls):
if not os.path.exists(download_directory_path):
os.makedirs(download_directory_path)
for url in urls:
filename = url.split('/')[-1]
file_path = os.path.join(download_directory_path, filename)
if not os.path.exists(file_path):
print(f"Baixando {filename}...")
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"{filename} baixado com sucesso.")
else:
print(f"Falha ao baixar {filename}. Status code: {response.status_code}")
else:
print(f"{filename} já existe. Pulando o download.")
model_path = hf_hub_download(repo_id="countfloyd/deepfake", filename="inswapper_128.onnx")
conditional_download("./", ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth'])
FACE_SWAPPER = None
FACE_ANALYSER = None
FACE_ENHANCER = None
@spaces.GPU(duration=300, enable_queue=True)
def process_video(source_path: str, target_path: str, enhance = False, progress=gr.Progress(), output_path='result.mp4') -> None:
def get_face_analyser():
global FACE_ANALYSER
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=["CUDAExecutionProvider"])
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640))
return FACE_ANALYSER
def get_face_enhancer() -> Any:
global FACE_ENHANCER
if FACE_ENHANCER is None:
FACE_ENHANCER = gfpgan.GFPGANer(model_path="./GFPGANv1.4.pth", upscale=2, ) # type: ignore[attr-defined]
return FACE_ENHANCER
def get_one_face(frame):
face = get_face_analyser().get(frame)
try:
return min(face, key=lambda x: x.bbox[0])
except ValueError:
return None
def get_face_swapper():
global FACE_SWAPPER
if FACE_SWAPPER is None:
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=["CUDAExecutionProvider"])
return FACE_SWAPPER
def swap_face(source_face, target_face, temp_frame):
return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)
def process_frame(source_face, temp_frame, enhance):
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = swap_face(source_face, target_face, temp_frame)
if enhance:
temp_frame = enhance_face(temp_frame)
return temp_frame
def process_image(source_path: str, target_path: str, output_path: str) -> None:
source_face = get_one_face(cv2.imread(source_path))
target_frame = cv2.imread(target_path)
result = process_frame(source_face, target_frame)
cv2.imwrite(output_path, result)
def create_temp_directory():
temp_dir = tempfile.mkdtemp()
return temp_dir
def enhance_face(temp_frame):
_, _, temp_frame = get_face_enhancer().enhance(
temp_frame,
paste_back=True
)
return temp_frame
def remove_temp_directory(temp_dir):
try:
for filename in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, filename)
if os.path.isfile(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
os.rmdir(file_path)
os.rmdir(temp_dir)
except Exception as e:
print(f"Erro ao remover a pasta temporária: {e}")
def extract_frames(video_path: str):
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
print("Erro ao abrir o vídeo.")
return []
frames = []
while True:
ret, frame = video_capture.read()
if not ret:
break
frames.append(frame)
video_capture.release()
return frames
def get_video_fps(video_path: str) -> float:
video_capture = cv2.VideoCapture(video_path)
if not video_capture.isOpened():
raise ValueError("Erro ao abrir o vídeo.")
fps = video_capture.get(cv2.CAP_PROP_FPS)
video_capture.release()
return fps
def create_video_from_frames(temp_dir: str, output_video_path: str, fps: float) -> None:
temp_frames_pattern = os.path.join(temp_dir, "frame_%04d.jpg")
ffmpeg_command = [
'ffmpeg',
'-y',
'-framerate', str(fps),
'-i', temp_frames_pattern,
'-c:v', 'libx264',
'-pix_fmt', 'yuv420p',
'-preset', 'ultrafast',
output_video_path
]
subprocess.run(ffmpeg_command, check=True)
def extract_audio(video_path: str, audio_path: str) -> None:
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', video_path,
'-q:a', '0',
'-map', 'a',
'-preset', 'ultrafast',
audio_path
]
subprocess.run(ffmpeg_command, check=True)
def add_audio_to_video(video_path: str, audio_path: str, output_video_path: str) -> None:
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', video_path,
'-i', audio_path,
'-c:v', 'copy',
'-c:a', 'aac',
'-strict', 'experimental',
'-preset', 'ultrafast',
output_video_path
]
subprocess.run(ffmpeg_command, check=True)
def delete_file(file_path: str) -> None:
try:
os.remove(file_path)
except Exception as e:
print(f"Erro ao remover o arquivo: {e}")
def reduce_video(video_path: str, output_video_path: str) -> None:
ffmpeg_command = [
'ffmpeg',
'-y',
'-i', video_path,
'-vf', "scale='if(gte(iw,ih),720,-1)':'if(gte(iw,ih),-1,720)',pad=ceil(iw/2)*2:ceil(ih/2)*2",
'-preset', 'ultrafast',
'-r','24',
output_video_path
]
subprocess.run(ffmpeg_command, check=True)
temp_dir = create_temp_directory()
video_input = temp_dir + "/input.mp4"
reduce_video(target_path , video_input)
source_face = get_one_face(cv2.imread(source_path))
frames = extract_frames(video_input)
for index, frame in progress.tqdm(enumerate(frames), total=len(frames)):
processed_frame = process_frame(source_face, frame, enhance)
frame_filename = os.path.join(temp_dir, f"frame_{index:04d}.jpg")
cv2.imwrite(frame_filename, processed_frame)
video_path = temp_dir + "/out.mp4"
create_video_from_frames(temp_dir, video_path, get_video_fps(video_input))
audio_path = temp_dir + "/audio.wav"
extract_audio(video_input, audio_path)
add_audio_to_video(video_path, audio_path, output_path)
return output_path
app = gr.Interface(
fn=process_video,
inputs=[gr.Image(type='filepath'), gr.Video(), gr.Checkbox(label="Use Face GAN(increase render time)", value=False)],
outputs=[gr.Video()],
)
app.launch(share='True') |