Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.l | |
import os | |
import warnings | |
import torch | |
from PIL import Image | |
import argparse | |
from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer | |
warnings.simplefilter('ignore', category=UserWarning) | |
warnings.simplefilter('ignore', category=FutureWarning) | |
warnings.simplefilter('ignore', category=DeprecationWarning) | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--use_lite", default=False, action="store_true" | |
) | |
parser.add_argument( | |
"--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str | |
) | |
parser.add_argument( | |
"--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str | |
) | |
parser.add_argument( | |
"--text2image_path", default="weights/hunyuanDiT", type=str | |
) | |
parser.add_argument( | |
"--save_folder", default="./outputs/test/", type=str | |
) | |
parser.add_argument( | |
"--text_prompt", default="", type=str, | |
) | |
parser.add_argument( | |
"--image_prompt", default="", type=str | |
) | |
parser.add_argument( | |
"--device", default="cuda:0", type=str | |
) | |
parser.add_argument( | |
"--t2i_seed", default=0, type=int | |
) | |
parser.add_argument( | |
"--t2i_steps", default=25, type=int | |
) | |
parser.add_argument( | |
"--gen_seed", default=0, type=int | |
) | |
parser.add_argument( | |
"--gen_steps", default=50, type=int | |
) | |
parser.add_argument( | |
"--max_faces_num", default=80000, type=int, | |
help="max num of face, suggest 80000 for effect, 10000 for speed" | |
) | |
parser.add_argument( | |
"--save_memory", default=False, action="store_true" | |
) | |
parser.add_argument( | |
"--do_texture_mapping", default=False, action="store_true" | |
) | |
parser.add_argument( | |
"--do_render", default=False, action="store_true" | |
) | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = get_args() | |
assert not (args.text_prompt and args.image_prompt), "Text and image can only be given to one" | |
assert args.text_prompt or args.image_prompt, "Text and image can only be given to one" | |
# init model | |
rembg_model = Removebg() | |
image_to_views_model = Image2Views( | |
device=args.device, | |
use_lite=args.use_lite, | |
save_memory=args.save_memory | |
) | |
views_to_mesh_model = Views2Mesh( | |
args.mv23d_cfg_path, | |
args.mv23d_ckt_path, | |
args.device, | |
use_lite=args.use_lite, | |
save_memory=args.save_memory | |
) | |
if args.text_prompt: | |
text_to_image_model = Text2Image( | |
pretrain = args.text2image_path, | |
device = args.device, | |
save_memory = args.save_memory | |
) | |
if args.do_render: | |
gif_renderer = GifRenderer(device=args.device) | |
# ---- ----- ---- ---- ---- ---- | |
os.makedirs(args.save_folder, exist_ok=True) | |
# stage 1, text to image | |
if args.text_prompt: | |
res_rgb_pil = text_to_image_model( | |
args.text_prompt, | |
seed=args.t2i_seed, | |
steps=args.t2i_steps | |
) | |
res_rgb_pil.save(os.path.join(args.save_folder, "img.jpg")) | |
elif args.image_prompt: | |
res_rgb_pil = Image.open(args.image_prompt) | |
# stage 2, remove back ground | |
res_rgba_pil = rembg_model(res_rgb_pil) | |
res_rgb_pil.save(os.path.join(args.save_folder, "img_nobg.png")) | |
# stage 3, image to views | |
(views_grid_pil, cond_img), view_pil_list = image_to_views_model( | |
res_rgba_pil, | |
seed = args.gen_seed, | |
steps = args.gen_steps | |
) | |
views_grid_pil.save(os.path.join(args.save_folder, "views.jpg")) | |
# stage 4, views to mesh | |
views_to_mesh_model( | |
views_grid_pil, | |
cond_img, | |
seed = args.gen_seed, | |
target_face_count = args.max_faces_num, | |
save_folder = args.save_folder, | |
do_texture_mapping = args.do_texture_mapping | |
) | |
# stage 5, render gif | |
if args.do_render: | |
gif_renderer( | |
os.path.join(args.save_folder, 'mesh.obj'), | |
gif_dst_path = os.path.join(args.save_folder, 'output.gif'), | |
) | |