File size: 1,682 Bytes
bd97c62
a3d3a25
 
 
 
ae971dd
bd97c62
a3d3a25
 
ae971dd
bd97c62
a3d3a25
 
 
f74392b
a3d3a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
title = "Character aware stable difusion"
description = "This is a demo o a character aware diffusion model"
def infer_sd(prompt, negative_prompt, image):
    # your inference function for stable diffusion control 
    return None

def infer_charr_sd(prompt, negative_prompt, image):
    # your inference function for charr stable difusion control 
    return None

with gr.Blocks(theme='gradio/soft') as demo:
    gr.Markdown("## Character aware stable difusion")

    with gr.Tab("Character-Aware Difusion "):
        prompt_input_charr = gr.Textbox(label="Prompt")
        negative_prompt_charr = gr.Textbox(label="Negative Prompt")
        charr_input = gr.Image(label="Input Image")
        charr_output = gr.Image(label="Output Image")
        submit_btn = gr.Button(value = "Submit")
        charr_inputs = [prompt_input_charr, negative_prompt_charr, charr_input]
        submit_btn.click(fn=infer_charr_sd, inputs=charr_inputs, outputs=[charr_output])
        
    with gr.Tab("Stable Diffusion"):
        prompt_input_seg = gr.Textbox(label="Prompt")
        negative_prompt_seg = gr.Textbox(label="Negative Prompt")
        sd_input = gr.Image(label="Input Image")
        sd_output = gr.Image(label="Output Image")
        submit_btn = gr.Button(value = "Submit")
        sd_inputs = [prompt_input_seg, negative_prompt_seg, sd_input]
        submit_btn.click(fn=infer_sd, inputs=sd_inputs, outputs=[sd_output])
    #examples = [["postage stamp from california", "low quality", "charr_output.png", "charr_output.png" ]]
    #gr.Examples(fn = infer_sd, inputs = ["text", "text", "image", "image"], examples=examples, cache_examples=True)


demo.launch()