chansung's picture
set intra op threads (#5)
6cc6b6b
import csv
import os
import sys
import cv2
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import onnxruntime as ort
from matplotlib import gridspec
ade_palette = []
labels_list = []
csv.field_size_limit(sys.maxsize)
with open(r"labels.txt", "r") as fp:
for line in fp:
labels_list.append(line[:-1])
with open(r"ade_palette.txt", "r") as fp:
for line in fp:
tmp_list = list(map(int, line[:-1].strip("][").split(", ")))
ade_palette.append(tmp_list)
colormap = np.asarray(ade_palette)
model_filename = "segformer-b5-finetuned-ade-640-640.onnx"
sess_options = ort.SessionOptions()
sess_options.intra_op_num_threads = os.cpu_count()
sess = ort.InferenceSession(
model_filename, sess_options, providers=["CPUExecutionProvider"]
)
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis("off")
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg)
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
img = cv2.imread(input_img)
img = cv2.resize(img, (640, 640)).astype(np.float32)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_batch = np.expand_dims(img, axis=0)
img_batch = np.transpose(img_batch, (0, 3, 1, 2))
logits = sess.run(None, {"pixel_values": img_batch})[0]
logits = np.transpose(logits, (0, 2, 3, 1))
seg = np.argmax(logits, axis=-1)[0].astype("float32")
seg = cv2.resize(seg, (640, 640)).astype("uint8")
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg == label, :] = color
# Convert to BGR
color_seg = color_seg[..., ::-1]
# Show image + mask
pred_img = img * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
title = "SegFormer(ADE20k) in TensorFlow"
description = """
This is demo TensorFlow SegFormer from πŸ€— `transformers` official package. The pre-trained model was trained to segment scene specific images. We are **currently using ONNX model converted from the TensorFlow based SegFormer to improve the latency**. The average latency of an inference is **21** and **8** seconds for TensorFlow and ONNX converted models respectively (in [Colab](https://github.com/deep-diver/segformer-tf-transformers/blob/main/notebooks/TFSegFormer_ONNX.ipynb)). Check out the [repository](https://github.com/deep-diver/segformer-tf-transformers) to find out how to make inference, finetune the model with custom dataset, and further information.
"""
demo = gr.Interface(
sepia,
gr.inputs.Image(type="filepath"),
outputs=["plot"],
examples=["ADE_val_00000001.jpeg"],
allow_flagging="never",
title=title,
description=description,
)
demo.launch()