File size: 16,720 Bytes
f1063ce
 
 
 
 
 
ef87ed1
aeabaec
d22372b
aeabaec
 
ef87ed1
 
 
 
 
fbdea77
ef87ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1063ce
 
ef87ed1
f1063ce
 
 
ef87ed1
f1063ce
 
ef87ed1
 
 
f1063ce
ef87ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
f1063ce
 
ef87ed1
 
f1063ce
 
ef87ed1
f1063ce
ef87ed1
 
f1063ce
 
 
 
 
 
 
 
ef87ed1
f1063ce
ef87ed1
f1063ce
 
 
a61933d
f1063ce
 
ef87ed1
 
f1063ce
ef87ed1
f1063ce
ef87ed1
f1063ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef87ed1
 
4e963f7
 
 
 
 
 
f1063ce
 
 
 
 
 
 
 
c360670
ef87ed1
f1063ce
 
 
 
 
 
 
 
 
 
 
 
 
 
4e963f7
6ba40da
 
8978ec6
 
a8a7795
8978ec6
 
 
4e963f7
 
6ba40da
4e963f7
f1063ce
 
78cba35
f1063ce
 
dfd15b5
f1063ce
4bd929e
f1063ce
 
 
 
ef87ed1
f1063ce
 
 
 
 
 
 
 
 
59968c7
f1063ce
 
 
 
 
 
 
 
 
 
 
9b04bb7
f1063ce
 
 
ef87ed1
5c9d90a
ef87ed1
 
 
 
 
560ca38
ef87ed1
 
 
560ca38
ef87ed1
 
 
 
560ca38
ef87ed1
0cc0a6a
ef87ed1
51f1995
ef87ed1
 
 
 
 
 
560ca38
ef87ed1
0cc0a6a
ef87ed1
 
 
 
 
 
 
 
 
560ca38
ef87ed1
0cc0a6a
ef87ed1
 
 
 
560ca38
ef87ed1
 
 
 
 
 
 
 
560ca38
ef87ed1
 
 
 
 
 
 
 
 
 
560ca38
ef87ed1
f637041
ef87ed1
 
 
 
 
 
560ca38
ef87ed1
 
 
 
 
 
 
 
560ca38
ef87ed1
 
 
 
 
 
 
 
 
976429f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560ca38
ef87ed1
 
 
 
 
 
 
 
 
aeabaec
ef87ed1
16d0614
 
 
 
 
 
 
 
 
 
4e963f7
16d0614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e963f7
16d0614
 
 
 
 
 
 
 
 
 
4e963f7
16d0614
 
 
 
 
 
 
 
 
 
 
4e963f7
16d0614
 
 
 
 
 
 
 
 
 
8ebe6a8
16d0614
 
 
 
 
ef87ed1
 
 
 
f1063ce
 
ef87ed1
 
f1063ce
ef87ed1
f1063ce
 
ef87ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e963f7
 
 
 
 
 
ef87ed1
 
aeabaec
ef87ed1
 
aeabaec
ef87ed1
 
aeabaec
ef87ed1
 
aeabaec
ef87ed1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import time
import json
import requests

import gradio as gr

STYLE = """
.no-border {
    border: none !important;
}

.group-border {
  padding: 10px;
  border-width: 1px;
  border-radius: 10px;
  border-color: gray;
  border-style: solid;
  box-shadow: 1px 1px 3px;
}
.control-label-font {
  font-size: 13pt !important;
}
.control-button {
  background: none !important;
  border-color: #69ade2 !important;
  border-width: 2px !important;
  color: #69ade2 !important;
}
.center {
  text-align: center;
}
.right {
  text-align: right;
}
.no-label {
  padding: 0px !important;
}
.no-label > label > span {
  display: none;
}
.small-big {
  font-size: 12pt !important;
}

"""

def avaliable_providers():
    providers = []

    headers = {
        "Content-Type": "application/json",
    }
    endpoint_url = "https://api.endpoints.huggingface.cloud/v2/provider"
    response = requests.get(endpoint_url, headers=headers)

    providers = {}

    for provider in response.json()['vendors']:
        if provider['status'] == 'available':
            regions = {}

            availability = False
            for region in provider['regions']:
                if region["status"] == "available":
                    regions[region['name']] = {
                        "label": region['label'],
                        "computes": region['computes']
                    }
                    availability = True

            if availability:
                providers[provider['name']] = regions

    return providers

providers = avaliable_providers()

def update_regions(provider):
    avalialbe_regions = []
    regions = providers[provider]

    for region, attributes in regions.items():
        avalialbe_regions.append(f"{region}[{attributes['label']}]")

    return gr.Dropdown.update(
        choices=avalialbe_regions,
        value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
    )

def update_compute_options(provider, region):
    avalialbe_compute_options = []
    computes = providers[provider][region.split("[")[0].strip()]["computes"]

    for compute in computes:
        if compute['status'] == 'available':
            accelerator = compute['accelerator']
            numAccelerators = compute['numAccelerators']
            memoryGb = compute['memoryGb']
            architecture = compute['architecture']
            instanceType = compute['instanceType']
            pricePerHour = compute['pricePerHour']

            type = f"{numAccelerators}vCPU {memoryGb}{architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"

            avalialbe_compute_options.append(
                f"{compute['accelerator'].upper()} [{compute['instanceSize']}] 路 {type}{instanceType} 路 ${pricePerHour}/hour"
            )

    return gr.Dropdown.update(
        choices=avalialbe_compute_options,
        value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None
    )

def submit(
    hf_account_input,
    hf_token_input,
    endpoint_name_input,
    provider_selector,
    region_selector,
    repository_selector,
    task_selector,
    framework_selector,
    compute_selector,
    min_node_selector,
    max_node_selector,
    security_selector,
    custom_kernel,
    max_input_length,
    max_tokens,
    max_batch_prefill_token,
    max_batch_total_token    
):
    compute_resources = compute_selector.split("路")
    accelerator = compute_resources[0][:3].strip()

    size_l_index = compute_resources[0].index("[") - 1
    size_r_index = compute_resources[0].index("]")
    size = compute_resources[0][size_l_index : size_r_index].strip()

    type = compute_resources[-2].strip()

    payload = {
      "accountId": hf_account_input.strip(),
      "compute": {
        "accelerator": accelerator.lower(),
        "instanceSize": size[1:],
        "instanceType": type,
        "scaling": {
          "maxReplica": int(max_node_selector),
          "minReplica": int(min_node_selector)
        }
      },
      "model": {
        "framework": framework_selector.lower(),
        "image": {
          "custom": {
            "health_route": "/health",
            "env": {
                "DISABLE_CUSTOM_KERNELS": "true" if custom_kernel == "Enabled" else "false",
                "MAX_BATCH_PREFILL_TOKENS": str(max_batch_prefill_token),
                "MAX_BATCH_TOTAL_TOKENS": str(max_batch_total_token),
                "MAX_INPUT_LENGTH": str(max_input_length),
                "MAX_TOTAL_TOKENS": str(max_tokens),
                "MODEL_ID": repository_selector.lower(),
                # QUANTIZE: 'bitsandbytes' | 'gptq';
            },
            "url": "ghcr.io/huggingface/text-generation-inference:1.0.1",
          }
        },
        "repository": repository_selector.lower(),
        # "revision": "main",
        "task": task_selector.lower()
      },
      "name": endpoint_name_input.strip().lower(),
      "provider": {
        "region": region_selector.split("[")[0].lower(),
        "vendor": provider_selector.lower()
      },
      "type": security_selector.lower()
    }

    print(payload)

    payload = json.dumps(payload)
    print(payload)

    headers = {
        "Authorization": f"Bearer {hf_token_input.strip()}",
        "Content-Type": "application/json",
    }
    endpoint_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/"#{hf_account_input.strip()}"
    print(endpoint_url)

    response = requests.post(endpoint_url, headers=headers, data=payload)

    if response.status_code == 400:
        return f"{response.text}. Malformed data in {payload}"
    elif response.status_code == 401:
        return "Invalid token"
    elif response.status_code == 409:
        return f"Endpoint {endpoint_name_input} already exists"
    elif response.status_code == 202:
        return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@main.\nPlease check out the progress at https://ui.endpoints.huggingface.co/endpoints."
    else:
        return f"something went wrong {response.status_code} = {response.text}"

with gr.Blocks(css=STYLE) as hf_endpoint:
    with gr.Tab("Hugging Face", elem_classes=["no-border"]):
        gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])

        with gr.Column(elem_classes=["group-border"]):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("""### Hugging Face account ID (name)""")
                    hf_account_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])

                with gr.Column():
                    gr.Markdown("### Hugging Face access token")
                    hf_token_input = gr.Textbox(show_label=False, type="password", elem_classes=["no-label", "small-big"])

            with gr.Row():
                with gr.Column():
                    gr.Markdown("""### Target model

Model from the Hugging Face hub""")
                    repository_selector = gr.Textbox(
                        value="NousResearch/Nous-Hermes-Llama2-13b",
                        interactive=False,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

                with gr.Column():
                    gr.Markdown("""### Target model version(branch)

Branch name of the Model""")
                    revision_selector = gr.Textbox(
                        value=f"main",
                        interactive=False,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

        with gr.Column(elem_classes=["group-border"]):
            with gr.Column():
                gr.Markdown("""### Endpoint name

Name for your new endpoint""")
                endpoint_name_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])

            with gr.Row():
                with gr.Column():
                    gr.Markdown("""### Cloud Provider""")
                    provider_selector = gr.Dropdown(
                        choices=providers.keys(),
                        interactive=True,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

                with gr.Column():
                    gr.Markdown("""### Cloud Region""")
                    region_selector = gr.Dropdown(
                        [],
                        value="",
                        interactive=True,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

            with gr.Row(visible=False):
                with gr.Column():
                    gr.Markdown("### Task")
                    task_selector = gr.Textbox(
                        value="text-generation",
                        interactive=False,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

                with gr.Column():
                    gr.Markdown("### Framework")
                    framework_selector = gr.Textbox(
                        value="PyTorch",
                        interactive=False,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

            with gr.Column():
                gr.Markdown("""### Compute Instance Type""")
                compute_selector = gr.Dropdown(
                    [],
                    value="",
                    interactive=True,
                    show_label=False,
                    elem_classes=["no-label", "small-big"]
                )

            with gr.Row():
                with gr.Column():
                    gr.Markdown("""### Min Number of Nodes""")
                    min_node_selector = gr.Number(
                        value=1,
                        interactive=True,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

                with gr.Column():
                    gr.Markdown("""### Max Number of Nodes""")
                    max_node_selector = gr.Number(
                        value=1,
                        interactive=True,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

                with gr.Column():
                    gr.Markdown("""### Security Level""")
                    security_selector = gr.Radio(
                        choices=["Protected", "Public", "Private"],
                        value="Public",
                        interactive=True,
                        show_label=False,
                        elem_classes=["no-label", "small-big"]
                    )

        with gr.Column(elem_classes=["group-border"]):
            with gr.Accordion("Serving Container", open=False, elem_classes=["no-border"]):
                with gr.Column():
                    gr.Markdown("""### Container Type
    
    Text Generation Inference is an optimized container for text generation task""")
                    _ = gr.Textbox("Text Generation Inference", show_label=False, elem_classes=["no-label", "small-big"])
    
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("""### Custom Cuda Kernels
    
    TGI uses custom kernels to speed up inference for some models. You can try disabling them if you encounter issues.""")
                        custom_kernel = gr.Dropdown(
                            value="Enabled",
                            choices=["Enabled", "Disabled"],
                            interactive=True,
                            show_label=False,
                            elem_classes=["no-label", "small-big"]
                        )
    
                    with gr.Column():
                        gr.Markdown("""### Quantization
    
    Quantization can reduce the model size and improve latency, with little degradation in model accuracy.""")
                        _ = gr.Dropdown(
                            value="None",
                            choices=["None", "Bitsandbytes", "GPTQ"],
                            interactive=True,
                            show_label=False,
                            elem_classes=["no-label", "small-big"]
                        )
    
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("""### Max Input Length (per Query)
    
    Increasing this value can impact the amount of RAM required. Some models can only handle a finite range of sequences.""")
                        max_input_length = gr.Number(
                            value=1024,
                            interactive=True,
                            show_label=False,
                            elem_classes=["no-label", "small-big"]
                        )
    
                    with gr.Column():
                        gr.Markdown("""### Max Number of Tokens (per Query)
    
    The larger this value, the more memory each request will consume and the less effective batching can be.""")
                        max_tokens = gr.Number(
                            value=1512,
                            interactive=True,
                            show_label=False,
                            elem_classes=["no-label", "small-big"]
                        )
    
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("""### Max Batch Prefill Tokens
    
    Number of prefill tokens used during continuous batching. It can be useful to adjust this number since the prefill operation is memory-intensive and compute-bound.""")
                        max_batch_prefill_token = gr.Number(
                            value=2048,
                            interactive=True,
                            show_label=False,
                            elem_classes=["no-label", "small-big"]
                        )
    
                    with gr.Column():
                        gr.Markdown("""### Max Batch Total Tokens
    
    Number of tokens that can be passed before forcing waiting queries to be put on the batch. A value of 1000 can fit 10 queries of 100 tokens or a single query of 1000 tokens.""")
                        max_batch_total_token = gr.Number(
                            value=None,
                            interactive=True,
                            show_label=False,
                            elem_classes=["no-label", "small-big"]
                        )

        submit_button = gr.Button(
            value="Submit",
            elem_classes=["control-label-font", "control-button"]
        )

        status_txt = gr.Textbox(
            value="any status update will be displayed here",
            interactive=False,
            elem_classes=["no-label"]
        )

        provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)
        region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)

        submit_button.click(
            submit,
            inputs=[
                hf_account_input,
                hf_token_input,
                endpoint_name_input,
                provider_selector,
                region_selector,
                repository_selector,
                task_selector,
                framework_selector,
                compute_selector,
                min_node_selector,
                max_node_selector,
                security_selector,
                custom_kernel,
                max_input_length,
                max_tokens,
                max_batch_prefill_token,
                max_batch_total_token],
            outputs=status_txt)

    with gr.Tab("AWS", elem_classes=["no-border"]):
        gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])

    with gr.Tab("GCP", elem_classes=["no-border"]):
        gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])

    with gr.Tab("Azure", elem_classes=["no-border"]):
        gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])

    with gr.Tab("Lambdalabs", elem_classes=["no-border"]):
        gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])

hf_endpoint.launch(enable_queue=True, debug=True)