Spaces:
Runtime error
Runtime error
File size: 16,716 Bytes
f1063ce ef87ed1 aeabaec d22372b aeabaec ef87ed1 fbdea77 ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce a61933d f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 4e963f7 f1063ce c360670 ef87ed1 f1063ce 4e963f7 6ba40da 8978ec6 a8a7795 8978ec6 4e963f7 6ba40da 4e963f7 f1063ce ef87ed1 f1063ce dfd15b5 f1063ce ef87ed1 f1063ce 51f1995 f1063ce 9b04bb7 f1063ce ef87ed1 5c9d90a ef87ed1 560ca38 ef87ed1 560ca38 ef87ed1 560ca38 ef87ed1 0cc0a6a ef87ed1 51f1995 ef87ed1 560ca38 ef87ed1 0cc0a6a ef87ed1 560ca38 ef87ed1 0cc0a6a ef87ed1 560ca38 ef87ed1 560ca38 ef87ed1 560ca38 ef87ed1 f637041 ef87ed1 560ca38 ef87ed1 560ca38 ef87ed1 976429f 560ca38 ef87ed1 aeabaec ef87ed1 16d0614 4e963f7 16d0614 4e963f7 16d0614 4e963f7 16d0614 4e963f7 16d0614 8ebe6a8 16d0614 ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 f1063ce ef87ed1 4e963f7 ef87ed1 aeabaec ef87ed1 aeabaec ef87ed1 aeabaec ef87ed1 aeabaec ef87ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import time
import json
import requests
import gradio as gr
STYLE = """
.no-border {
border: none !important;
}
.group-border {
padding: 10px;
border-width: 1px;
border-radius: 10px;
border-color: gray;
border-style: solid;
box-shadow: 1px 1px 3px;
}
.control-label-font {
font-size: 13pt !important;
}
.control-button {
background: none !important;
border-color: #69ade2 !important;
border-width: 2px !important;
color: #69ade2 !important;
}
.center {
text-align: center;
}
.right {
text-align: right;
}
.no-label {
padding: 0px !important;
}
.no-label > label > span {
display: none;
}
.small-big {
font-size: 12pt !important;
}
"""
def avaliable_providers():
providers = []
headers = {
"Content-Type": "application/json",
}
endpoint_url = "https://api.endpoints.huggingface.cloud/v2/provider"
response = requests.get(endpoint_url, headers=headers)
providers = {}
for provider in response.json()['vendors']:
if provider['status'] == 'available':
regions = {}
availability = False
for region in provider['regions']:
if region["status"] == "available":
regions[region['name']] = {
"label": region['label'],
"computes": region['computes']
}
availability = True
if availability:
providers[provider['name']] = regions
return providers
providers = avaliable_providers()
def update_regions(provider):
avalialbe_regions = []
regions = providers[provider]
for region, attributes in regions.items():
avalialbe_regions.append(f"{region}[{attributes['label']}]")
return gr.Dropdown.update(
choices=avalialbe_regions,
value=avalialbe_regions[0] if len(avalialbe_regions) > 0 else None
)
def update_compute_options(provider, region):
avalialbe_compute_options = []
computes = providers[provider][region.split("[")[0].strip()]["computes"]
for compute in computes:
if compute['status'] == 'available':
accelerator = compute['accelerator']
numAccelerators = compute['numAccelerators']
memoryGb = compute['memoryGb']
architecture = compute['architecture']
instanceType = compute['instanceType']
pricePerHour = compute['pricePerHour']
type = f"{numAccelerators}vCPU {memoryGb} 路 {architecture}" if accelerator == "cpu" else f"{numAccelerators}x {architecture}"
avalialbe_compute_options.append(
f"{compute['accelerator'].upper()} [{compute['instanceSize']}] 路 {type} 路 {instanceType} 路 ${pricePerHour}/hour"
)
return gr.Dropdown.update(
choices=avalialbe_compute_options,
value=avalialbe_compute_options[0] if len(avalialbe_compute_options) > 0 else None
)
def submit(
hf_account_input,
hf_token_input,
endpoint_name_input,
provider_selector,
region_selector,
repository_selector,
task_selector,
framework_selector,
compute_selector,
min_node_selector,
max_node_selector,
security_selector,
custom_kernel,
max_input_length,
max_tokens,
max_batch_prefill_token,
max_batch_total_token
):
compute_resources = compute_selector.split("路")
accelerator = compute_resources[0][:3].strip()
size_l_index = compute_resources[0].index("[") - 1
size_r_index = compute_resources[0].index("]")
size = compute_resources[0][size_l_index : size_r_index].strip()
type = compute_resources[-2].strip()
payload = {
"accountId": hf_account_input.strip(),
"compute": {
"accelerator": accelerator.lower(),
"instanceSize": size[1:],
"instanceType": type,
"scaling": {
"maxReplica": int(max_node_selector),
"minReplica": int(min_node_selector)
}
},
"model": {
"framework": framework_selector.lower(),
"image": {
"custom": {
"health_route": "/health",
"env": {
"DISABLE_CUSTOM_KERNELS": "true" if custom_kernel == "Enabled" else "false",
"MAX_BATCH_PREFILL_TOKENS": str(max_batch_prefill_token),
"MAX_BATCH_TOTAL_TOKENS": str(max_batch_total_token),
"MAX_INPUT_LENGTH": str(max_input_length),
"MAX_TOTAL_TOKENS": str(max_tokens),
"MODEL_ID": repository_selector.lower(),
# QUANTIZE: 'bitsandbytes' | 'gptq';
},
"url": "ghcr.io/huggingface/text-generation-inference:1.0.1",
}
},
"repository": repository_selector.lower(),
"revision": "main",
"task": task_selector.lower()
},
"name": endpoint_name_input.strip().lower(),
"provider": {
"region": region_selector.split("/")[0].lower(),
"vendor": provider_selector.lower()
},
"type": security_selector.lower()
}
print(payload)
payload = json.dumps(payload)
print(payload)
headers = {
"Authorization": f"Bearer {hf_token_input.strip()}",
"Content-Type": "application/json",
}
endpoint_url = f"https://api.endpoints.huggingface.cloud/v2/endpoint/{hf_account_input.strip()}"
print(endpoint_url)
response = requests.post(endpoint_url, headers=headers, data=payload)
if response.status_code == 400:
return f"{response.text}. Malformed data in {payload}"
elif response.status_code == 401:
return "Invalid token"
elif response.status_code == 409:
return f"Endpoint {endpoint_name_input} already exists"
elif response.status_code == 202:
return f"Endpoint {endpoint_name_input} created successfully on {provider_selector.lower()} using {repository_selector.lower()}@main.\nPlease check out the progress at https://ui.endpoints.huggingface.co/endpoints."
else:
return f"something went wrong {response.status_code} = {response.text}"
with gr.Blocks(css=STYLE) as hf_endpoint:
with gr.Tab("Hugging Face", elem_classes=["no-border"]):
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])
with gr.Column(elem_classes=["group-border"]):
with gr.Row():
with gr.Column():
gr.Markdown("""### Hugging Face account ID (name)""")
hf_account_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
with gr.Column():
gr.Markdown("### Hugging Face access token")
hf_token_input = gr.Textbox(show_label=False, type="password", elem_classes=["no-label", "small-big"])
with gr.Row():
with gr.Column():
gr.Markdown("""### Target model
Model from the Hugging Face hub""")
repository_selector = gr.Textbox(
value="NousResearch/Nous-Hermes-Llama2-13b",
interactive=False,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Target model version(branch)
Branch name of the Model""")
revision_selector = gr.Textbox(
value=f"main",
interactive=False,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column(elem_classes=["group-border"]):
with gr.Column():
gr.Markdown("""### Endpoint name
Name for your new endpoint""")
endpoint_name_input = gr.Textbox(show_label=False, elem_classes=["no-label", "small-big"])
with gr.Row():
with gr.Column():
gr.Markdown("""### Cloud Provider""")
provider_selector = gr.Dropdown(
choices=providers.keys(),
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Cloud Region""")
region_selector = gr.Dropdown(
[],
value="",
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Row(visible=False):
with gr.Column():
gr.Markdown("### Task")
task_selector = gr.Textbox(
value="text-generation",
interactive=False,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("### Framework")
framework_selector = gr.Textbox(
value="PyTorch",
interactive=False,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Compute Instance Type""")
compute_selector = gr.Dropdown(
[],
value="",
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Row():
with gr.Column():
gr.Markdown("""### Min Number of Nodes""")
min_node_selector = gr.Number(
value=1,
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Max Number of Nodes""")
max_node_selector = gr.Number(
value=1,
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Security Level""")
security_selector = gr.Radio(
choices=["Protected", "Public", "Private"],
value="Public",
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column(elem_classes=["group-border"]):
with gr.Accordion("Serving Container", open=False, elem_classes=["no-border"]):
with gr.Column():
gr.Markdown("""### Container Type
Text Generation Inference is an optimized container for text generation task""")
_ = gr.Textbox("Text Generation Inference", show_label=False, elem_classes=["no-label", "small-big"])
with gr.Row():
with gr.Column():
gr.Markdown("""### Custom Cuda Kernels
TGI uses custom kernels to speed up inference for some models. You can try disabling them if you encounter issues.""")
custom_kernel = gr.Dropdown(
value="Enabled",
choices=["Enabled", "Disabled"],
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Quantization
Quantization can reduce the model size and improve latency, with little degradation in model accuracy.""")
_ = gr.Dropdown(
value="None",
choices=["None", "Bitsandbytes", "GPTQ"],
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Row():
with gr.Column():
gr.Markdown("""### Max Input Length (per Query)
Increasing this value can impact the amount of RAM required. Some models can only handle a finite range of sequences.""")
max_input_length = gr.Number(
value=1024,
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Max Number of Tokens (per Query)
The larger this value, the more memory each request will consume and the less effective batching can be.""")
max_tokens = gr.Number(
value=1512,
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Row():
with gr.Column():
gr.Markdown("""### Max Batch Prefill Tokens
Number of prefill tokens used during continuous batching. It can be useful to adjust this number since the prefill operation is memory-intensive and compute-bound.""")
max_batch_prefill_token = gr.Number(
value=2048,
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
with gr.Column():
gr.Markdown("""### Max Batch Total Tokens
Number of tokens that can be passed before forcing waiting queries to be put on the batch. A value of 1000 can fit 10 queries of 100 tokens or a single query of 1000 tokens.""")
max_batch_total_token = gr.Number(
value=None,
interactive=True,
show_label=False,
elem_classes=["no-label", "small-big"]
)
submit_button = gr.Button(
value="Submit",
elem_classes=["control-label-font", "control-button"]
)
status_txt = gr.Textbox(
value="any status update will be displayed here",
interactive=False,
elem_classes=["no-label"]
)
provider_selector.change(update_regions, inputs=provider_selector, outputs=region_selector)
region_selector.change(update_compute_options, inputs=[provider_selector, region_selector], outputs=compute_selector)
submit_button.click(
submit,
inputs=[
hf_account_input,
hf_token_input,
endpoint_name_input,
provider_selector,
region_selector,
repository_selector,
task_selector,
framework_selector,
compute_selector,
min_node_selector,
max_node_selector,
security_selector,
custom_kernel,
max_input_length,
max_tokens,
max_batch_prefill_token,
max_batch_total_token],
outputs=status_txt)
with gr.Tab("AWS", elem_classes=["no-border"]):
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])
with gr.Tab("GCP", elem_classes=["no-border"]):
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])
with gr.Tab("Azure", elem_classes=["no-border"]):
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])
with gr.Tab("Lambdalabs", elem_classes=["no-border"]):
gr.Markdown("# Deploy LLM on 馃 Hugging Face Inference Endpoint", elem_classes=["center"])
hf_endpoint.launch(enable_queue=True, debug=True)
|