Spaces:
Sleeping
Sleeping
Commit
·
7eab253
1
Parent(s):
891d816
removed commented code
Browse files
app.py
CHANGED
@@ -80,49 +80,3 @@ if uploaded_excel and uploaded_text:
|
|
80 |
data=excel_data,
|
81 |
file_name='Fetch_Employer_Output.xlsx',
|
82 |
mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
83 |
-
|
84 |
-
|
85 |
-
# import streamlit as st
|
86 |
-
# import pandas as pd
|
87 |
-
# from io import BytesIO
|
88 |
-
# from helper import get_res_df
|
89 |
-
|
90 |
-
# def to_excel(df):
|
91 |
-
# output = BytesIO()
|
92 |
-
# with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
93 |
-
# df.to_excel(writer, index=False)
|
94 |
-
# processed_data = output.getvalue()
|
95 |
-
# return processed_data
|
96 |
-
|
97 |
-
# def process_files(excel_file, text_file):
|
98 |
-
# print(excel_file,text_file)
|
99 |
-
# if excel_file.name.endswith('.csv'):
|
100 |
-
# df_excel = pd.read_csv(excel_file)
|
101 |
-
# else:
|
102 |
-
# df_excel = pd.read_excel(excel_file)
|
103 |
-
# df_excel['Employer Number']=[str(number).zfill(6) for number in df_excel['Employer Number']]
|
104 |
-
|
105 |
-
# lines = text_file.read().decode('utf-8').splitlines()
|
106 |
-
# data = [line.strip().split(',') for line in lines]
|
107 |
-
# df = pd.DataFrame(data)
|
108 |
-
|
109 |
-
# return df_excel,df
|
110 |
-
|
111 |
-
|
112 |
-
# st.title("Fetch Employer")
|
113 |
-
|
114 |
-
# uploaded_excel = st.file_uploader("Upload the Master file(.xls or .csv)", type=["csv", "xls", "xlsx"])
|
115 |
-
# uploaded_text = st.file_uploader("Upload your Text file(.txt)", type=["txt"])
|
116 |
-
|
117 |
-
# if uploaded_excel and uploaded_text:
|
118 |
-
# st.write("Processing the files...")
|
119 |
-
# master_data, df = process_files(uploaded_excel, uploaded_text)
|
120 |
-
|
121 |
-
# st.write("Final Output")
|
122 |
-
# res = get_res_df(master_data,df)
|
123 |
-
# st.dataframe(res)
|
124 |
-
# excel_data = to_excel(res)
|
125 |
-
# st.download_button(label="Download Excel",
|
126 |
-
# data=excel_data,
|
127 |
-
# file_name='Fetch_Employer_Output.xlsx',
|
128 |
-
# mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
|
|
80 |
data=excel_data,
|
81 |
file_name='Fetch_Employer_Output.xlsx',
|
82 |
mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
helper.py
CHANGED
@@ -234,166 +234,3 @@ def get_res_df(master_data, df):
|
|
234 |
res_df = generate_df(master_data=master_data, df=df, employer_names=res_names)
|
235 |
|
236 |
return res_df
|
237 |
-
|
238 |
-
# import pandas as pd
|
239 |
-
# import numpy as np
|
240 |
-
# from rank_bm25 import BM25Okapi
|
241 |
-
# import re
|
242 |
-
# from nltk.stem import WordNetLemmatizer,PorterStemmer
|
243 |
-
# from datetime import datetime
|
244 |
-
# lemmatizer = WordNetLemmatizer()
|
245 |
-
|
246 |
-
# threshold = 11
|
247 |
-
|
248 |
-
# def clean_text(text):
|
249 |
-
# cleaned_text = text.lower()
|
250 |
-
# cleaned_text = re.sub(r'[^A-Za-z0-9\s./]', ' ', cleaned_text)
|
251 |
-
# cleaned_text = re.sub(r'\.', '', cleaned_text)
|
252 |
-
# cleaned_text = re.sub(r'\/', '', cleaned_text)
|
253 |
-
# cleaned_text = re.sub(r'\d{3,}', '', cleaned_text)
|
254 |
-
# cleaned_text = re.sub('pvt','private',cleaned_text)
|
255 |
-
# cleaned_text = re.sub('ltd','limited',cleaned_text)
|
256 |
-
# cleaned_text = re.sub(r'(?<!\w)dev(?!\w)', 'development',cleaned_text)
|
257 |
-
# cleaned_text = re.sub(r'(?<!\w)co(?!\w)', 'corporation',cleaned_text)
|
258 |
-
# cleaned_text = re.sub(r'\s+', ' ', cleaned_text)
|
259 |
-
# cleaned_text = ' '.join([lemmatizer.lemmatize(word) for word in cleaned_text.split()])
|
260 |
-
# # cleaned_text = ' '.join([stemmer.stem(word) for word in cleaned_text.split()])
|
261 |
-
# return cleaned_text.strip()
|
262 |
-
|
263 |
-
# def fetch_empno(text):
|
264 |
-
# return re.findall(r'\b\d{6}\b', text)
|
265 |
-
|
266 |
-
# def preprocess_query(query):
|
267 |
-
# new_query = query
|
268 |
-
# if '||' in query:
|
269 |
-
# ind = query.find('||')
|
270 |
-
# new_query=query[ind+2:]
|
271 |
-
# elif '-' in query:
|
272 |
-
# ind = query.find('-')
|
273 |
-
# new_query=query[ind:]
|
274 |
-
# if len(new_query) < 20:
|
275 |
-
# new_query = query
|
276 |
-
# new_query = clean_text(new_query)
|
277 |
-
# return new_query
|
278 |
-
|
279 |
-
# def parse_date(date_str):
|
280 |
-
# try:
|
281 |
-
# return datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S').strftime('%d/%m/%Y')
|
282 |
-
# except ValueError:
|
283 |
-
# try:
|
284 |
-
# return datetime.strptime(date_str, '%m/%d/%Y').strftime('%d/%m/%Y')
|
285 |
-
# except ValueError:
|
286 |
-
# return date_str.strftime('%m/%d/%Y')
|
287 |
-
|
288 |
-
# def generate_df(master_data, df, employer_names):
|
289 |
-
# dates = [datetime.strptime(date_str, '%d%m%y').strftime('%d/%m/%Y') for date_str in df[4]]
|
290 |
-
# bank_desc = list(df[9])
|
291 |
-
# accounts = ['NASA' if i == '713' else 'EDAS' if i == '068' else None for i in df[0]]
|
292 |
-
# credits = list(df[7])
|
293 |
-
# employer_codes = []
|
294 |
-
# bank_statemnt_ref = []
|
295 |
-
# account_mgr = []
|
296 |
-
# emp_province = []
|
297 |
-
# region = []
|
298 |
-
# industry = []
|
299 |
-
# contributing_stts = []
|
300 |
-
# date_joined = []
|
301 |
-
# termination_date = []
|
302 |
-
# email_addr = []
|
303 |
-
# for name in employer_names:
|
304 |
-
# if name=="NOT FOUND":
|
305 |
-
# employer_codes.append(np.nan)
|
306 |
-
# bank_statemnt_ref.append(np.nan)
|
307 |
-
# account_mgr.append(np.nan)
|
308 |
-
# emp_province.append(np.nan)
|
309 |
-
# region.append(np.nan)
|
310 |
-
# industry.append(np.nan)
|
311 |
-
# contributing_stts.append(np.nan)
|
312 |
-
# date_joined.append(np.nan)
|
313 |
-
# termination_date.append(np.nan)
|
314 |
-
# email_addr.append(np.nan)
|
315 |
-
# else:
|
316 |
-
# tmp = master_data[master_data['Employer Name']==name]
|
317 |
-
# if tmp.empty:
|
318 |
-
# employer_codes.append(np.nan)
|
319 |
-
# bank_statemnt_ref.append(np.nan)
|
320 |
-
# account_mgr.append(np.nan)
|
321 |
-
# emp_province.append(np.nan)
|
322 |
-
# region.append(np.nan)
|
323 |
-
# industry.append(np.nan)
|
324 |
-
# contributing_stts.append(np.nan)
|
325 |
-
# date_joined.append(np.nan)
|
326 |
-
# termination_date.append(np.nan)
|
327 |
-
# email_addr.append(np.nan)
|
328 |
-
# else:
|
329 |
-
# employer_codes.append(list(tmp['Employer Number'])[-1])
|
330 |
-
# bank_statemnt_ref.append(list(tmp['Bank Statement Reference'])[-1])
|
331 |
-
# account_mgr.append(list(tmp['NASFUNDContact'])[-1])
|
332 |
-
# emp_province.append(list(tmp['Employer Province'])[-1])
|
333 |
-
# region.append(list(tmp['Region'])[-1])
|
334 |
-
# industry.append(list(tmp['Industry'])[-1])
|
335 |
-
# contributing_stts.append(list(tmp['Contributing Status'])[-1])
|
336 |
-
# date = str(list(tmp['Date Joined Plan'])[-1])
|
337 |
-
# date_joined.append(parse_date(date))
|
338 |
-
# termination_date.append(list(tmp['Termination Date'])[-1])
|
339 |
-
# email_addr.append(list(tmp['Email Addresses'])[-1])
|
340 |
-
|
341 |
-
# res_df = pd.DataFrame()
|
342 |
-
# res_df['Receipt Date'] = dates
|
343 |
-
# res_df['Bank Description'] = bank_desc
|
344 |
-
# res_df['Account'] = accounts
|
345 |
-
# res_df[' Credit '] = credits
|
346 |
-
# res_df['Employer Code'] = employer_codes
|
347 |
-
# res_df['Employer Name'] = employer_names
|
348 |
-
# res_df['Bank Statement Reference'] = bank_statemnt_ref
|
349 |
-
# res_df['Account Manager'] = account_mgr
|
350 |
-
# res_df['Employer Province'] = emp_province
|
351 |
-
# res_df['Region'] = region
|
352 |
-
# res_df['Industry'] = industry
|
353 |
-
# res_df['Contributing Status'] = contributing_stts
|
354 |
-
# res_df['Date Joined Plan'] = date_joined
|
355 |
-
# res_df['Termination Date'] = termination_date
|
356 |
-
# res_df['Email Addresses'] = email_addr
|
357 |
-
# res_df['First Name'] = np.nan
|
358 |
-
# res_df['Surname'] = np.nan
|
359 |
-
# res_df['Membership#'] = np.nan
|
360 |
-
|
361 |
-
# return res_df
|
362 |
-
|
363 |
-
# def get_res_df(master_data,df):
|
364 |
-
# corpus = list(master_data['Employer Name'])
|
365 |
-
# lower_case_corpus = [clean_text(name) for name in corpus]
|
366 |
-
# corpus = corpus[1:]
|
367 |
-
# lower_case_corpus = lower_case_corpus[1:]
|
368 |
-
# tokenized_corpus = [doc.split(' ') for doc in lower_case_corpus]
|
369 |
-
# bm25 = BM25Okapi(tokenized_corpus)
|
370 |
-
# queries = list(df[9])
|
371 |
-
# queries = [query[:query.rindex('-')] for query in queries]
|
372 |
-
# empnos = [fetch_empno(text) for text in queries]
|
373 |
-
# new_queries = [preprocess_query(query) for query in queries]
|
374 |
-
|
375 |
-
# res_names = []
|
376 |
-
# scores = []
|
377 |
-
# for query,empno_arr in zip(new_queries,empnos):
|
378 |
-
# name = ""
|
379 |
-
# if len(empno_arr) != 0:
|
380 |
-
# for empno in empno_arr:
|
381 |
-
# names = list(master_data[master_data['Employer Number']==empno]['Employer Name'])
|
382 |
-
# if len(names)!=0:
|
383 |
-
# name=names[0]
|
384 |
-
# scores.append(100)
|
385 |
-
# res_names.append(name)
|
386 |
-
# break
|
387 |
-
# if name=="":
|
388 |
-
# tokenized_query = query.split(" ")
|
389 |
-
# name = bm25.get_top_n(tokenized_query, corpus, n=1)
|
390 |
-
# doc_score = max(bm25.get_scores(tokenized_query))
|
391 |
-
# scores.append(doc_score)
|
392 |
-
# res_names.append(name[0] if doc_score>threshold else "NOT FOUND")
|
393 |
-
# not_found=0
|
394 |
-
# for score in scores:
|
395 |
-
# if score<threshold:
|
396 |
-
# not_found+=1
|
397 |
-
# res_df = generate_df(master_data=master_data,df=df,employer_names=res_names)
|
398 |
-
|
399 |
-
# return res_df
|
|
|
234 |
res_df = generate_df(master_data=master_data, df=df, employer_names=res_names)
|
235 |
|
236 |
return res_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|