Spaces:
Runtime error
Runtime error
Commit
·
9af4f2c
1
Parent(s):
27bf1d6
Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile
|
2 |
+
import librosa
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import os
|
6 |
+
from convert_wavs import convert_audio
|
7 |
+
|
8 |
+
|
9 |
+
AVAILABLE_EMOTIONS = {
|
10 |
+
"neutral",
|
11 |
+
"calm",
|
12 |
+
"happy",
|
13 |
+
"sad",
|
14 |
+
"angry",
|
15 |
+
"fear",
|
16 |
+
"disgust",
|
17 |
+
"ps", # pleasant surprised
|
18 |
+
"boredom"
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def get_label(audio_config):
|
23 |
+
"""Returns label corresponding to which features are to be extracted
|
24 |
+
e.g:
|
25 |
+
audio_config = {'mfcc': True, 'chroma': True, 'contrast': False, 'tonnetz': False, 'mel': False}
|
26 |
+
get_label(audio_config): 'mfcc-chroma'
|
27 |
+
"""
|
28 |
+
features = ["mfcc", "chroma", "mel", "contrast", "tonnetz"]
|
29 |
+
label = ""
|
30 |
+
for feature in features:
|
31 |
+
if audio_config[feature]:
|
32 |
+
label += f"{feature}-"
|
33 |
+
return label.rstrip("-")
|
34 |
+
|
35 |
+
|
36 |
+
def get_dropout_str(dropout, n_layers=3):
|
37 |
+
if isinstance(dropout, list):
|
38 |
+
return "_".join([ str(d) for d in dropout])
|
39 |
+
elif isinstance(dropout, float):
|
40 |
+
return "_".join([ str(dropout) for i in range(n_layers) ])
|
41 |
+
|
42 |
+
|
43 |
+
def get_first_letters(emotions):
|
44 |
+
return "".join(sorted([ e[0].upper() for e in emotions ]))
|
45 |
+
|
46 |
+
|
47 |
+
def extract_feature(file_name, **kwargs):
|
48 |
+
"""
|
49 |
+
Extract feature from audio file `file_name`
|
50 |
+
Features supported:
|
51 |
+
- MFCC (mfcc)
|
52 |
+
- Chroma (chroma)
|
53 |
+
- MEL Spectrogram Frequency (mel)
|
54 |
+
- Contrast (contrast)
|
55 |
+
- Tonnetz (tonnetz)
|
56 |
+
e.g:
|
57 |
+
`features = extract_feature(path, mel=True, mfcc=True)`
|
58 |
+
"""
|
59 |
+
mfcc = kwargs.get("mfcc")
|
60 |
+
chroma = kwargs.get("chroma")
|
61 |
+
mel = kwargs.get("mel")
|
62 |
+
contrast = kwargs.get("contrast")
|
63 |
+
tonnetz = kwargs.get("tonnetz")
|
64 |
+
# try:
|
65 |
+
# with soundfile.SoundFile(file_name) as sound_file:
|
66 |
+
# pass
|
67 |
+
# except RuntimeError:
|
68 |
+
# # not properly formated, convert to 16000 sample rate & mono channel using ffmpeg
|
69 |
+
# # get the basename
|
70 |
+
# basename = os.path.basename(file_name)
|
71 |
+
# dirname = os.path.dirname(file_name)
|
72 |
+
# name, ext = os.path.splitext(basename)
|
73 |
+
# new_basename = f"{name}_c.wav"
|
74 |
+
# new_filename = os.path.join(dirname, new_basename)
|
75 |
+
# v = convert_audio(file_name, new_filename)
|
76 |
+
# if v:
|
77 |
+
# raise NotImplementedError("Converting the audio files failed, make sure `ffmpeg` is installed in your machine and added to PATH.")
|
78 |
+
# else:
|
79 |
+
# new_filename = file_name
|
80 |
+
# with soundfile.SoundFile(new_filename) as sound_file:
|
81 |
+
X = file_name[1].astype("float32")
|
82 |
+
#X = sound_file.read(dtype="float32")
|
83 |
+
sample_rate = file_name[0] #sound_file.samplerate
|
84 |
+
#sample_rate = sound_file.samplerate
|
85 |
+
if chroma or contrast:
|
86 |
+
stft = np.abs(librosa.stft(X))
|
87 |
+
result = np.array([])
|
88 |
+
if mfcc:
|
89 |
+
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0)
|
90 |
+
result = np.hstack((result, mfccs))
|
91 |
+
if chroma:
|
92 |
+
chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0)
|
93 |
+
result = np.hstack((result, chroma))
|
94 |
+
if mel:
|
95 |
+
mel = np.mean(librosa.feature.melspectrogram(X, sr=sample_rate).T,axis=0)
|
96 |
+
result = np.hstack((result, mel))
|
97 |
+
if contrast:
|
98 |
+
contrast = np.mean(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T,axis=0)
|
99 |
+
result = np.hstack((result, contrast))
|
100 |
+
if tonnetz:
|
101 |
+
tonnetz = np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(X), sr=sample_rate).T,axis=0)
|
102 |
+
result = np.hstack((result, tonnetz))
|
103 |
+
return result
|
104 |
+
|
105 |
+
|
106 |
+
def get_best_estimators(classification):
|
107 |
+
"""
|
108 |
+
Loads the estimators that are pickled in `grid` folder
|
109 |
+
Note that if you want to use different or more estimators,
|
110 |
+
you can fine tune the parameters in `grid_search.py` script
|
111 |
+
and run it again ( may take hours )
|
112 |
+
"""
|
113 |
+
if classification:
|
114 |
+
return pickle.load(open("grid/best_classifiers.pickle", "rb"))
|
115 |
+
else:
|
116 |
+
return pickle.load(open("grid/best_regressors.pickle", "rb"))
|
117 |
+
|
118 |
+
|
119 |
+
def get_audio_config(features_list):
|
120 |
+
"""
|
121 |
+
Converts a list of features into a dictionary understandable by
|
122 |
+
`data_extractor.AudioExtractor` class
|
123 |
+
"""
|
124 |
+
audio_config = {'mfcc': False, 'chroma': False, 'mel': False, 'contrast': False, 'tonnetz': False}
|
125 |
+
for feature in features_list:
|
126 |
+
if feature not in audio_config:
|
127 |
+
raise TypeError(f"Feature passed: {feature} is not recognized.")
|
128 |
+
audio_config[feature] = True
|
129 |
+
return audio_config
|
130 |
+
|