Spaces:
Runtime error
Runtime error
Commit
·
1293675
1
Parent(s):
e466a5a
Delete test.py
Browse files
test.py
DELETED
@@ -1,184 +0,0 @@
|
|
1 |
-
from emotion_recognition import EmotionRecognizer
|
2 |
-
|
3 |
-
import pyaudio
|
4 |
-
import os
|
5 |
-
import wave
|
6 |
-
from sys import byteorder
|
7 |
-
from array import array
|
8 |
-
from struct import pack
|
9 |
-
from sklearn.ensemble import GradientBoostingClassifier, BaggingClassifier
|
10 |
-
import gradio as gr
|
11 |
-
from sklearn.svm import SVC
|
12 |
-
|
13 |
-
from utils import get_best_estimators
|
14 |
-
|
15 |
-
THRESHOLD = 500
|
16 |
-
CHUNK_SIZE = 1024
|
17 |
-
FORMAT = pyaudio.paInt16
|
18 |
-
RATE = 16000
|
19 |
-
|
20 |
-
SILENCE = 30
|
21 |
-
|
22 |
-
def is_silent(snd_data):
|
23 |
-
"Returns 'True' if below the 'silent' threshold"
|
24 |
-
return max(snd_data) < THRESHOLD
|
25 |
-
|
26 |
-
def normalize(snd_data):
|
27 |
-
"Average the volume out"
|
28 |
-
MAXIMUM = 16384
|
29 |
-
times = float(MAXIMUM)/max(abs(i) for i in snd_data)
|
30 |
-
|
31 |
-
r = array('h')
|
32 |
-
for i in snd_data:
|
33 |
-
r.append(int(i*times))
|
34 |
-
return r
|
35 |
-
|
36 |
-
def trim(snd_data):
|
37 |
-
"Trim the blank spots at the start and end"
|
38 |
-
def _trim(snd_data):
|
39 |
-
snd_started = False
|
40 |
-
r = array('h')
|
41 |
-
|
42 |
-
for i in snd_data:
|
43 |
-
if not snd_started and abs(i)>THRESHOLD:
|
44 |
-
snd_started = True
|
45 |
-
r.append(i)
|
46 |
-
|
47 |
-
elif snd_started:
|
48 |
-
r.append(i)
|
49 |
-
return r
|
50 |
-
|
51 |
-
# Trim to the left
|
52 |
-
snd_data = _trim(snd_data)
|
53 |
-
|
54 |
-
# Trim to the right
|
55 |
-
snd_data.reverse()
|
56 |
-
snd_data = _trim(snd_data)
|
57 |
-
snd_data.reverse()
|
58 |
-
return snd_data
|
59 |
-
|
60 |
-
def add_silence(snd_data, seconds):
|
61 |
-
"Add silence to the start and end of 'snd_data' of length 'seconds' (float)"
|
62 |
-
r = array('h', [0 for i in range(int(seconds*RATE))])
|
63 |
-
r.extend(snd_data)
|
64 |
-
r.extend([0 for i in range(int(seconds*RATE))])
|
65 |
-
return r
|
66 |
-
|
67 |
-
def record():
|
68 |
-
"""
|
69 |
-
Record a word or words from the microphone and
|
70 |
-
return the data as an array of signed shorts.
|
71 |
-
|
72 |
-
Normalizes the audio, trims silence from the
|
73 |
-
start and end, and pads with 0.5 seconds of
|
74 |
-
blank sound to make sure VLC et al can play
|
75 |
-
it without getting chopped off.
|
76 |
-
"""
|
77 |
-
p = pyaudio.PyAudio()
|
78 |
-
stream = p.open(format=FORMAT, channels=1, rate=RATE,
|
79 |
-
input=True, output=True,
|
80 |
-
frames_per_buffer=CHUNK_SIZE)
|
81 |
-
|
82 |
-
num_silent = 0
|
83 |
-
snd_started = False
|
84 |
-
|
85 |
-
r = array('h')
|
86 |
-
|
87 |
-
while 1:
|
88 |
-
# little endian, signed short
|
89 |
-
snd_data = array('h', stream.read(CHUNK_SIZE))
|
90 |
-
if byteorder == 'big':
|
91 |
-
snd_data.byteswap()
|
92 |
-
r.extend(snd_data)
|
93 |
-
|
94 |
-
silent = is_silent(snd_data)
|
95 |
-
|
96 |
-
if silent and snd_started:
|
97 |
-
num_silent += 1
|
98 |
-
elif not silent and not snd_started:
|
99 |
-
snd_started = True
|
100 |
-
|
101 |
-
if snd_started and num_silent > SILENCE:
|
102 |
-
break
|
103 |
-
|
104 |
-
sample_width = p.get_sample_size(FORMAT)
|
105 |
-
stream.stop_stream()
|
106 |
-
stream.close()
|
107 |
-
p.terminate()
|
108 |
-
|
109 |
-
r = normalize(r)
|
110 |
-
r = trim(r)
|
111 |
-
r = add_silence(r, 0.5)
|
112 |
-
return sample_width, r
|
113 |
-
|
114 |
-
def record_to_file(path):
|
115 |
-
"Records from the microphone and outputs the resulting data to 'path'"
|
116 |
-
sample_width, data = record()
|
117 |
-
data = pack('<' + ('h'*len(data)), *data)
|
118 |
-
|
119 |
-
wf = wave.open(path, 'wb')
|
120 |
-
wf.setnchannels(1)
|
121 |
-
wf.setsampwidth(sample_width)
|
122 |
-
wf.setframerate(RATE)
|
123 |
-
wf.writeframes(data)
|
124 |
-
wf.close()
|
125 |
-
|
126 |
-
|
127 |
-
def get_estimators_name(estimators):
|
128 |
-
result = [ '"{}"'.format(estimator.__class__.__name__) for estimator, _, _ in estimators ]
|
129 |
-
return ','.join(result), {estimator_name.strip('"'): estimator for estimator_name, (estimator, _, _) in zip(result, estimators)}
|
130 |
-
|
131 |
-
def emotion_recognizer(inp):
|
132 |
-
print(inp)
|
133 |
-
estimators = get_best_estimators(True)
|
134 |
-
estimators_str, estimator_dict = get_estimators_name(estimators)
|
135 |
-
features = ["mfcc", "chroma", "mel"]
|
136 |
-
detector = EmotionRecognizer(estimator_dict["BaggingClassifier"], emotions=["sad","neutral","happy"], features=features,
|
137 |
-
verbose=0)
|
138 |
-
detector.train()
|
139 |
-
print("Test accuracy score: {:.3f}%".format(detector.test_score() * 100))
|
140 |
-
return detector.predict(inp)
|
141 |
-
|
142 |
-
def greet(name):
|
143 |
-
return "Helo" + name + "!"
|
144 |
-
|
145 |
-
if __name__ == "__main__":
|
146 |
-
# estimators = get_best_estimators(True)
|
147 |
-
# estimators_str, estimator_dict = get_estimators_name(estimators)
|
148 |
-
# import argparse
|
149 |
-
# parser = argparse.ArgumentParser(description="""
|
150 |
-
# Testing emotion recognition system using your voice,
|
151 |
-
# please consider changing the model and/or parameters as you wish.
|
152 |
-
# """)
|
153 |
-
# parser.add_argument("-e", "--emotions", help=
|
154 |
-
# """Emotions to recognize separated by a comma ',', available emotions are
|
155 |
-
# "neutral", "calm", "happy" "sad", "angry", "fear", "disgust", "ps" (pleasant surprise)
|
156 |
-
# and "boredom", default is "sad,neutral,happy"
|
157 |
-
# """, default="sad,neutral,happy")
|
158 |
-
# parser.add_argument("-m", "--model", help=
|
159 |
-
# """
|
160 |
-
# The model to use, 8 models available are: {},
|
161 |
-
# default is "BaggingClassifier"
|
162 |
-
# """.format(estimators_str), default="BaggingClassifier")
|
163 |
-
#
|
164 |
-
#
|
165 |
-
# # Parse the arguments passed
|
166 |
-
# args = parser.parse_args()
|
167 |
-
#
|
168 |
-
# features = ["mfcc", "chroma", "mel"]
|
169 |
-
# detector = EmotionRecognizer(estimator_dict[args.model], emotions=args.emotions.split(","), features=features, verbose=0)
|
170 |
-
# detector.train()
|
171 |
-
# print("Test accuracy score: {:.3f}%".format(detector.test_score()*100))
|
172 |
-
# print("Please talk")
|
173 |
-
|
174 |
-
# filename = "test.wav"
|
175 |
-
# record_to_file(filename)
|
176 |
-
# result = detector.predict(filename)
|
177 |
-
# print(result)
|
178 |
-
|
179 |
-
audio = gr.inputs.Audio(source="upload", type="numpy", label=None, optional=False)
|
180 |
-
|
181 |
-
#gr.Interface(fn=emotion_recognizer, inputs=audio, outputs="text", capture_session=True).launch()
|
182 |
-
|
183 |
-
iface = gr.Interface(fn=emotion_recognizer, inputs = "audio", outputs = "text")
|
184 |
-
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|