File size: 17,100 Bytes
10f5619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
#pragma once

#include <atomic>
#include <utility>
#include <cstring>
#include <type_traits>
#include <cstdint>

#include "libipc/def.h"

#include "libipc/platform/detail.h"
#include "libipc/circ/elem_def.h"
#include "libipc/utility/log.h"
#include "libipc/utility/utility.h"

namespace ipc {

////////////////////////////////////////////////////////////////
/// producer-consumer implementation
////////////////////////////////////////////////////////////////

template <typename Flag>
struct prod_cons_impl;

template <>
struct prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {

    template <std::size_t DataSize, std::size_t AlignSize>
    struct elem_t {
        std::aligned_storage_t<DataSize, AlignSize> data_ {};
    };

    alignas(cache_line_size) std::atomic<circ::u2_t> rd_; // read index
    alignas(cache_line_size) std::atomic<circ::u2_t> wt_; // write index

    constexpr circ::u2_t cursor() const noexcept {
        return 0;
    }

    template <typename W, typename F, typename E>
    bool push(W* /*wrapper*/, F&& f, E* elems) {
        auto cur_wt = circ::index_of(wt_.load(std::memory_order_relaxed));
        if (cur_wt == circ::index_of(rd_.load(std::memory_order_acquire) - 1)) {
            return false; // full
        }
        std::forward<F>(f)(&(elems[cur_wt].data_));
        wt_.fetch_add(1, std::memory_order_release);
        return true;
    }

    /**

     * In single-single-unicast, 'force_push' means 'no reader' or 'the only one reader is dead'.

     * So we could just disconnect all connections of receiver, and return false.

    */
    template <typename W, typename F, typename E>
    bool force_push(W* wrapper, F&&, E*) {
        wrapper->elems()->disconnect_receiver(~static_cast<circ::cc_t>(0u));
        return false;
    }

    template <typename W, typename F, typename R, typename E>
    bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E* elems) {
        auto cur_rd = circ::index_of(rd_.load(std::memory_order_relaxed));
        if (cur_rd == circ::index_of(wt_.load(std::memory_order_acquire))) {
            return false; // empty
        }
        std::forward<F>(f)(&(elems[cur_rd].data_));
        std::forward<R>(out)(true);
        rd_.fetch_add(1, std::memory_order_release);
        return true;
    }
};

template <>
struct prod_cons_impl<wr<relat::single, relat::multi , trans::unicast>>
     : prod_cons_impl<wr<relat::single, relat::single, trans::unicast>> {

    template <typename W, typename F, typename E>
    bool force_push(W* wrapper, F&&, E*) {
        wrapper->elems()->disconnect_receiver(1);
        return false;
    }

    template <typename W, typename F, typename R, 
              template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
    bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
        byte_t buff[DS];
        for (unsigned k = 0;;) {
            auto cur_rd = rd_.load(std::memory_order_relaxed);
            if (circ::index_of(cur_rd) ==
                circ::index_of(wt_.load(std::memory_order_acquire))) {
                return false; // empty
            }
            std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
            if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
                std::forward<F>(f)(buff);
                std::forward<R>(out)(true);
                return true;
            }
            ipc::yield(k);
        }
    }
};

template <>
struct prod_cons_impl<wr<relat::multi , relat::multi, trans::unicast>>
     : prod_cons_impl<wr<relat::single, relat::multi, trans::unicast>> {

    using flag_t = std::uint64_t;

    template <std::size_t DataSize, std::size_t AlignSize>
    struct elem_t {
        std::aligned_storage_t<DataSize, AlignSize> data_ {};
        std::atomic<flag_t> f_ct_ { 0 }; // commit flag
    };

    alignas(cache_line_size) std::atomic<circ::u2_t> ct_; // commit index

    template <typename W, typename F, typename E>
    bool push(W* /*wrapper*/, F&& f, E* elems) {
        circ::u2_t cur_ct, nxt_ct;
        for (unsigned k = 0;;) {
            cur_ct = ct_.load(std::memory_order_relaxed);
            if (circ::index_of(nxt_ct = cur_ct + 1) ==
                circ::index_of(rd_.load(std::memory_order_acquire))) {
                return false; // full
            }
            if (ct_.compare_exchange_weak(cur_ct, nxt_ct, std::memory_order_acq_rel)) {
                break;
            }
            ipc::yield(k);
        }
        auto* el = elems + circ::index_of(cur_ct);
        std::forward<F>(f)(&(el->data_));
        // set flag & try update wt
        el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
        while (1) {
            auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
            if (cur_ct != wt_.load(std::memory_order_relaxed)) {
                return true;
            }
            if ((~cac_ct) != cur_ct) {
                return true;
            }
            if (!el->f_ct_.compare_exchange_strong(cac_ct, 0, std::memory_order_relaxed)) {
                return true;
            }
            wt_.store(nxt_ct, std::memory_order_release);
            cur_ct = nxt_ct;
            nxt_ct = cur_ct + 1;
            el = elems + circ::index_of(cur_ct);
        }
        return true;
    }

    template <typename W, typename F, typename E>
    bool force_push(W* wrapper, F&&, E*) {
        wrapper->elems()->disconnect_receiver(1);
        return false;
    }

    template <typename W, typename F, typename R, 
              template <std::size_t, std::size_t> class E, std::size_t DS, std::size_t AS>
    bool pop(W* /*wrapper*/, circ::u2_t& /*cur*/, F&& f, R&& out, E<DS, AS>* elems) {
        byte_t buff[DS];
        for (unsigned k = 0;;) {
            auto cur_rd = rd_.load(std::memory_order_relaxed);
            auto cur_wt = wt_.load(std::memory_order_acquire);
            auto id_rd  = circ::index_of(cur_rd);
            auto id_wt  = circ::index_of(cur_wt);
            if (id_rd == id_wt) {
                auto* el = elems + id_wt;
                auto cac_ct = el->f_ct_.load(std::memory_order_acquire);
                if ((~cac_ct) != cur_wt) {
                    return false; // empty
                }
                if (el->f_ct_.compare_exchange_weak(cac_ct, 0, std::memory_order_relaxed)) {
                    wt_.store(cur_wt + 1, std::memory_order_release);
                }
                k = 0;
            }
            else {
                std::memcpy(buff, &(elems[circ::index_of(cur_rd)].data_), sizeof(buff));
                if (rd_.compare_exchange_weak(cur_rd, cur_rd + 1, std::memory_order_release)) {
                    std::forward<F>(f)(buff);
                    std::forward<R>(out)(true);
                    return true;
                }
                ipc::yield(k);
            }
        }
    }
};

template <>
struct prod_cons_impl<wr<relat::single, relat::multi, trans::broadcast>> {

    using rc_t = std::uint64_t;

    enum : rc_t {
        ep_mask = 0x00000000ffffffffull,
        ep_incr = 0x0000000100000000ull
    };

    template <std::size_t DataSize, std::size_t AlignSize>
    struct elem_t {
        std::aligned_storage_t<DataSize, AlignSize> data_ {};
        std::atomic<rc_t> rc_ { 0 }; // read-counter
    };

    alignas(cache_line_size) std::atomic<circ::u2_t> wt_;   // write index
    alignas(cache_line_size) rc_t epoch_ { 0 };             // only one writer

    circ::u2_t cursor() const noexcept {
        return wt_.load(std::memory_order_acquire);
    }

    template <typename W, typename F, typename E>
    bool push(W* wrapper, F&& f, E* elems) {
        E* el;
        for (unsigned k = 0;;) {
            circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
            if (cc == 0) return false; // no reader
            el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
            // check all consumers have finished reading this element
            auto cur_rc = el->rc_.load(std::memory_order_acquire);
            circ::cc_t rem_cc = cur_rc & ep_mask;
            if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch_)) {
                return false; // has not finished yet
            }
            // consider rem_cc to be 0 here
            if (el->rc_.compare_exchange_weak(
                        cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
                break;
            }
            ipc::yield(k);
        }
        std::forward<F>(f)(&(el->data_));
        wt_.fetch_add(1, std::memory_order_release);
        return true;
    }

    template <typename W, typename F, typename E>
    bool force_push(W* wrapper, F&& f, E* elems) {
        E* el;
        epoch_ += ep_incr;
        for (unsigned k = 0;;) {
            circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
            if (cc == 0) return false; // no reader
            el = elems + circ::index_of(wt_.load(std::memory_order_relaxed));
            // check all consumers have finished reading this element
            auto cur_rc = el->rc_.load(std::memory_order_acquire);
            circ::cc_t rem_cc = cur_rc & ep_mask;
            if (cc & rem_cc) {
                ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
                cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
                if (cc == 0) return false; // no reader
            }
            // just compare & exchange
            if (el->rc_.compare_exchange_weak(
                        cur_rc, epoch_ | static_cast<rc_t>(cc), std::memory_order_release)) {
                break;
            }
            ipc::yield(k);
        }
        std::forward<F>(f)(&(el->data_));
        wt_.fetch_add(1, std::memory_order_release);
        return true;
    }

    template <typename W, typename F, typename R, typename E>
    bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E* elems) {
        if (cur == cursor()) return false; // acquire
        auto* el = elems + circ::index_of(cur++);
        std::forward<F>(f)(&(el->data_));
        for (unsigned k = 0;;) {
            auto cur_rc = el->rc_.load(std::memory_order_acquire);
            if ((cur_rc & ep_mask) == 0) {
                std::forward<R>(out)(true);
                return true;
            }
            auto nxt_rc = cur_rc & ~static_cast<rc_t>(wrapper->connected_id());
            if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
                std::forward<R>(out)((nxt_rc & ep_mask) == 0);
                return true;
            }
            ipc::yield(k);
        }
    }
};

template <>
struct prod_cons_impl<wr<relat::multi, relat::multi, trans::broadcast>> {

    using rc_t   = std::uint64_t;
    using flag_t = std::uint64_t;

    enum : rc_t {
        rc_mask = 0x00000000ffffffffull,
        ep_mask = 0x00ffffffffffffffull,
        ep_incr = 0x0100000000000000ull,
        ic_mask = 0xff000000ffffffffull,
        ic_incr = 0x0000000100000000ull
    };

    template <std::size_t DataSize, std::size_t AlignSize>
    struct elem_t {
        std::aligned_storage_t<DataSize, AlignSize> data_ {};
        std::atomic<rc_t  > rc_   { 0 }; // read-counter
        std::atomic<flag_t> f_ct_ { 0 }; // commit flag
    };

    alignas(cache_line_size) std::atomic<circ::u2_t> ct_;   // commit index
    alignas(cache_line_size) std::atomic<rc_t> epoch_ { 0 };

    circ::u2_t cursor() const noexcept {
        return ct_.load(std::memory_order_acquire);
    }

    constexpr static rc_t inc_rc(rc_t rc) noexcept {
        return (rc & ic_mask) | ((rc + ic_incr) & ~ic_mask);
    }

    constexpr static rc_t inc_mask(rc_t rc) noexcept {
        return inc_rc(rc) & ~rc_mask;
    }

    template <typename W, typename F, typename E>
    bool push(W* wrapper, F&& f, E* elems) {
        E* el;
        circ::u2_t cur_ct;
        rc_t epoch = epoch_.load(std::memory_order_acquire);
        for (unsigned k = 0;;) {
            circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
            if (cc == 0) return false; // no reader
            el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
            // check all consumers have finished reading this element
            auto cur_rc = el->rc_.load(std::memory_order_relaxed);
            circ::cc_t rem_cc = cur_rc & rc_mask;
            if ((cc & rem_cc) && ((cur_rc & ~ep_mask) == epoch)) {
                return false; // has not finished yet
            }
            else if (!rem_cc) {
                auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
                if ((cur_fl != cur_ct) && cur_fl) {
                    return false; // full
                }
            }
            // consider rem_cc to be 0 here
            if (el->rc_.compare_exchange_weak(
                        cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed) &&
                epoch_.compare_exchange_weak(epoch, epoch, std::memory_order_acq_rel)) {
                break;
            }
            ipc::yield(k);
        }
        // only one thread/process would touch here at one time
        ct_.store(cur_ct + 1, std::memory_order_release);
        std::forward<F>(f)(&(el->data_));
        // set flag & try update wt
        el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
        return true;
    }

    template <typename W, typename F, typename E>
    bool force_push(W* wrapper, F&& f, E* elems) {
        E* el;
        circ::u2_t cur_ct;
        rc_t epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
        for (unsigned k = 0;;) {
            circ::cc_t cc = wrapper->elems()->connections(std::memory_order_relaxed);
            if (cc == 0) return false; // no reader
            el = elems + circ::index_of(cur_ct = ct_.load(std::memory_order_relaxed));
            // check all consumers have finished reading this element
            auto cur_rc = el->rc_.load(std::memory_order_acquire);
            circ::cc_t rem_cc = cur_rc & rc_mask;
            if (cc & rem_cc) {
                ipc::log("force_push: k = %u, cc = %u, rem_cc = %u\n", k, cc, rem_cc);
                cc = wrapper->elems()->disconnect_receiver(rem_cc); // disconnect all invalid readers
                if (cc == 0) return false; // no reader
            }
            // just compare & exchange
            if (el->rc_.compare_exchange_weak(
                        cur_rc, inc_mask(epoch | (cur_rc & ep_mask)) | static_cast<rc_t>(cc), std::memory_order_relaxed)) {
                if (epoch == epoch_.load(std::memory_order_acquire)) {
                    break;
                }
                else if (push(wrapper, std::forward<F>(f), elems)) {
                    return true;
                }
                epoch = epoch_.fetch_add(ep_incr, std::memory_order_release) + ep_incr;
            }
            ipc::yield(k);
        }
        // only one thread/process would touch here at one time
        ct_.store(cur_ct + 1, std::memory_order_release);
        std::forward<F>(f)(&(el->data_));
        // set flag & try update wt
        el->f_ct_.store(~static_cast<flag_t>(cur_ct), std::memory_order_release);
        return true;
    }

    template <typename W, typename F, typename R, typename E, std::size_t N>
    bool pop(W* wrapper, circ::u2_t& cur, F&& f, R&& out, E(& elems)[N]) {
        auto* el = elems + circ::index_of(cur);
        auto cur_fl = el->f_ct_.load(std::memory_order_acquire);
        if (cur_fl != ~static_cast<flag_t>(cur)) {
            return false; // empty
        }
        ++cur;
        std::forward<F>(f)(&(el->data_));
        for (unsigned k = 0;;) {
            auto cur_rc = el->rc_.load(std::memory_order_acquire);
            if ((cur_rc & rc_mask) == 0) {
                std::forward<R>(out)(true);
                el->f_ct_.store(cur + N - 1, std::memory_order_release);
                return true;
            }
            auto nxt_rc = inc_rc(cur_rc) & ~static_cast<rc_t>(wrapper->connected_id());
            bool last_one = false;
            if ((last_one = (nxt_rc & rc_mask) == 0)) {
                el->f_ct_.store(cur + N - 1, std::memory_order_release);
            }
            if (el->rc_.compare_exchange_weak(cur_rc, nxt_rc, std::memory_order_release)) {
                std::forward<R>(out)(last_one);
                return true;
            }
            ipc::yield(k);
        }
    }
};

} // namespace ipc