File size: 2,568 Bytes
377e4e1
ca430b9
 
377e4e1
ca430b9
 
 
 
377e4e1
 
 
ca430b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
title: ASR Evaluation Tool
emoji: 🎯
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 5.16.0
app_file: app.py
pinned: false
---

# ASR Evaluation Tool (Ver 1.1)

This Gradio app provides a user-friendly interface for calculating Word Error Rate (WER) and related metrics between reference and hypothesis texts. It's particularly useful for evaluating speech recognition or machine translation outputs.

## Features

- Calculate WER, MER, WIL, and WIP metrics
- Text normalization options
- Custom word filtering
- Detailed error analysis
- Example inputs for testing

## How to Use

1. Enter or paste your reference text
2. Enter or paste your hypothesis text
3. Configure options (normalization, word filtering)
4. Click "Calculate WER" to see results

NOTE: There might be a 30-second delay due to the r1:1.5B model being called for medical term recall calculations.

![Example](./Example.jpg)



## Local Development

1. Clone the repository:
```bash
git clone https://github.com/yourusername/wer-evaluation-tool.git
cd wer-evaluation-tool
```

2. Create and activate a virtual environment using `uv`:
```bash
uv venv
source .venv/bin/activate  # On Unix/macOS
# or
.venv\Scripts\activate  # On Windows
```

3. Install dependencies:
```bash
uv pip install -r requirements.txt
```

4. Run the app locally:
```bash
uv run python app_gradio.py
```

## Installation

You can install the package directly from PyPI:

```bash
uv pip install wer-evaluation-tool
```

## Testing

Run the test suite using pytest:

```bash
uv run pytest tests/
```

## Contributing

1. Fork the repository
2. Create a new branch (`git checkout -b feature/improvement`)
3. Make your changes
4. Run tests to ensure everything works
5. Commit your changes (`git commit -am 'Add new feature'`)
6. Push to the branch (`git push origin feature/improvement`)
7. Create a Pull Request

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments

- Thanks to all contributors who have helped with the development
- Inspired by the need for better speech recognition evaluation tools
- Built with [Gradio](https://gradio.app/)

## Contact

For questions or feedback, please:
- Open an issue in the GitHub repository
- Contact the maintainers at [email/contact information]

## Citation

If you use this tool in your research, please cite:

```bibtex
@software{wer_evaluation_tool,
  title = {WER Evaluation Tool},
  author = {Your Name},
  year = {2024},
  url = {https://github.com/yourusername/wer-evaluation-tool}
}
```