Spaces:
Runtime error
Runtime error
File size: 4,246 Bytes
a00be78 e915c68 a00be78 033af05 a00be78 13e0d1b e915c68 13e0d1b e915c68 033af05 a00be78 13e0d1b 033af05 a00be78 033af05 13e0d1b e915c68 13e0d1b a00be78 e915c68 13e0d1b e915c68 44cb622 13e0d1b a00be78 44cb622 a00be78 44cb622 a00be78 e915c68 13e0d1b e915c68 13e0d1b e915c68 13e0d1b e915c68 13e0d1b e915c68 13e0d1b a00be78 13e0d1b a00be78 e915c68 a00be78 13e0d1b a00be78 13e0d1b e915c68 a00be78 13e0d1b e915c68 a00be78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from huggingface_hub import HfApi
import matplotlib.pyplot as plt
from typing import Tuple, Optional
import pandas as pd
import gradio as gr
import duckdb
import requests
import llama_cpp
import instructor
import enum
from pydantic import BaseModel, Field
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
view_name = "dataset_view"
hf_api = HfApi()
conn = duckdb.connect()
llama = llama_cpp.Llama(
model_path="Hermes-2-Pro-Llama-3-8B-Q8_0.gguf",
n_gpu_layers=-1,
chat_format="chatml",
n_ctx=2048,
verbose=False,
temperature=0.1,
)
create = instructor.patch(
create=llama.create_chat_completion_openai_v1,
mode=instructor.Mode.JSON_SCHEMA,
)
class OutputTypes(str, enum.Enum):
TABLE = "table"
BARCHART = "barchart"
LINECHART = "linechart"
class SQLResponse(BaseModel):
sql: str
visualization_type: Optional[OutputTypes] = Field(
None, description="The type of visualization to display"
)
data_key: Optional[str] = Field(
None, description="The column name that contains the data for chart responses"
)
label_key: Optional[str] = Field(
None, description="The column name that contains the labels for chart responses"
)
def get_dataset_ddl(dataset_id: str) -> str:
response = requests.get(f"{BASE_DATASETS_SERVER_URL}/parquet?dataset={dataset_id}")
response.raise_for_status() # Check if the request was successful
first_parquet = response.json().get("parquet_files", [])[0]
first_parquet_url = first_parquet.get("url")
if not first_parquet_url:
raise ValueError("No valid URL found for the first parquet file.")
conn.execute(
f"CREATE OR REPLACE VIEW {view_name} as SELECT * FROM read_parquet('{first_parquet_url}');"
)
dataset_ddl = conn.execute(f"PRAGMA table_info('{view_name}');").fetchall()
column_data_types = ",\n\t".join(
[f"{column[1]} {column[2]}" for column in dataset_ddl]
)
sql_ddl = """
CREATE TABLE {} (
{}
);
""".format(
view_name, column_data_types
)
return sql_ddl
def generate_query(dataset_id: str, query: str) -> str:
ddl = get_dataset_ddl(dataset_id)
system_prompt = f"""
You are an expert SQL assistant with access to the following DuckDB Table:
```sql
{ddl}
```
Please assist the user by writing a SQL query that answers the user's question.
"""
print("Calling LLM with system prompt: ", system_prompt)
resp: SQLResponse = create(
model="Hermes-2-Pro-Llama-3-8B",
messages=[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": query,
},
],
response_model=SQLResponse,
)
print("Received Response: ", resp)
return resp
def query_dataset(dataset_id: str, query: str) -> Tuple[pd.DataFrame, str, plt.Figure]:
response: SQLResponse = generate_query(dataset_id, query)
df = conn.execute(response.sql).fetchdf()
plot = None
if response.visualization_type == OutputTypes.LINECHART:
plot = df.plot(
kind="line", x=response.data_key, y=response.label_key
).get_figure()
elif response.visualization_type == OutputTypes.BARCHART:
plot = df.plot(
kind="bar", x=response.data_key, y=response.label_key
).get_figure()
markdown_output = f"""```sql\n{response.sql}\n```"""
return df, markdown_output, plot
with gr.Blocks() as demo:
gr.Markdown("# Query your HF Datasets with Natural Language ππ")
dataset_id = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Find your favorite dataset...",
search_type="dataset",
value="teknium/OpenHermes-2.5",
)
user_query = gr.Textbox("", label="Ask anything...")
btn = gr.Button("Ask πͺ")
sql_query = gr.Markdown(label="Output SQL Query")
df = gr.DataFrame()
plot = gr.Plot()
btn.click(
query_dataset,
inputs=[dataset_id, user_query],
outputs=[df, sql_query, plot],
)
if __name__ == "__main__":
demo.launch()
|