Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
|
3 |
import torch
|
4 |
import open_clip
|
5 |
|
@@ -24,9 +24,12 @@ git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-l
|
|
24 |
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
25 |
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
coca_model, _, coca_transform = open_clip.create_model_and_transforms(
|
32 |
model_name="coca_ViT-L-14",
|
@@ -40,8 +43,9 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
40 |
git_model_large_coco.to(device)
|
41 |
git_model_large_textcaps.to(device)
|
42 |
blip_model_large.to(device)
|
43 |
-
vitgpt_model.to(device)
|
44 |
coca_model.to(device)
|
|
|
45 |
|
46 |
def generate_caption(processor, model, image, tokenizer=None):
|
47 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
@@ -74,18 +78,20 @@ def generate_captions(image):
|
|
74 |
|
75 |
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
76 |
|
77 |
-
caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
78 |
|
79 |
caption_coca = generate_caption_coca(coca_model, coca_transform, image)
|
80 |
|
81 |
-
|
|
|
|
|
82 |
|
83 |
|
84 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
85 |
-
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by
|
86 |
|
87 |
title = "Interactive demo: comparing image captioning models"
|
88 |
-
description = "Gradio Demo to compare GIT, BLIP,
|
89 |
article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
|
90 |
|
91 |
interface = gr.Interface(fn=generate_captions,
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
|
3 |
import torch
|
4 |
import open_clip
|
5 |
|
|
|
24 |
blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
25 |
blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
26 |
|
27 |
+
blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
28 |
+
blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b")
|
29 |
+
|
30 |
+
# vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
31 |
+
# vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
32 |
+
# vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
33 |
|
34 |
coca_model, _, coca_transform = open_clip.create_model_and_transforms(
|
35 |
model_name="coca_ViT-L-14",
|
|
|
43 |
git_model_large_coco.to(device)
|
44 |
git_model_large_textcaps.to(device)
|
45 |
blip_model_large.to(device)
|
46 |
+
# vitgpt_model.to(device)
|
47 |
coca_model.to(device)
|
48 |
+
blip2_model.to(device)
|
49 |
|
50 |
def generate_caption(processor, model, image, tokenizer=None):
|
51 |
inputs = processor(images=image, return_tensors="pt").to(device)
|
|
|
78 |
|
79 |
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
|
80 |
|
81 |
+
# caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
|
82 |
|
83 |
caption_coca = generate_caption_coca(coca_model, coca_transform, image)
|
84 |
|
85 |
+
caption_blip2 = generate_caption(blip2_processor, blip2_model, image)
|
86 |
+
|
87 |
+
return caption_git_large_coco, caption_git_large_textcaps, caption_blip_large, caption_coca, caption_blip2
|
88 |
|
89 |
|
90 |
examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
|
91 |
+
outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on TextCaps"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 2.7b")]
|
92 |
|
93 |
title = "Interactive demo: comparing image captioning models"
|
94 |
+
description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
|
95 |
article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
|
96 |
|
97 |
interface = gr.Interface(fn=generate_captions,
|