nielsr HF staff commited on
Commit
b8c788a
1 Parent(s): 21e7a3a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -14
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
3
  import torch
4
  import open_clip
5
 
@@ -15,7 +15,7 @@ torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/as
15
  git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
16
  git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
17
 
18
- git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
19
  # git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
20
 
21
  # blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
@@ -27,17 +27,20 @@ blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip
27
  # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
  # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
30
- blip2_processor_8_bit = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
31
- blip2_model_8_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_8bit=True)
 
 
 
32
 
33
  # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
34
  # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
35
  # vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
36
 
37
- coca_model, _, coca_transform = open_clip.create_model_and_transforms(
38
- model_name="coca_ViT-L-14",
39
- pretrained="mscoco_finetuned_laion2B-s13B-b90k"
40
- )
41
 
42
  device = "cuda" if torch.cuda.is_available() else "cpu"
43
 
@@ -47,7 +50,7 @@ git_model_large_coco.to(device)
47
  # git_model_large_textcaps.to(device)
48
  blip_model_large.to(device)
49
  # vitgpt_model.to(device)
50
- coca_model.to(device)
51
  # blip2_model.to(device)
52
 
53
  def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
@@ -73,6 +76,18 @@ def generate_caption_coca(model, transform, image):
73
  return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
74
 
75
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  def generate_captions(image):
77
  # caption_git_base = generate_caption(git_processor_base, git_model_base, image)
78
 
@@ -86,20 +101,22 @@ def generate_captions(image):
86
 
87
  # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
88
 
89
- caption_coca = generate_caption_coca(coca_model, coca_transform, image)
90
 
91
  # caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
92
 
93
- caption_blip2_8_bit = generate_caption(blip2_processor_8_bit, blip2_model_8_bit, image, use_float_16=True).strip()
 
 
94
 
95
- return caption_git_large_coco, caption_blip_large, caption_coca, caption_blip2_8_bit
96
 
97
 
98
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
99
- outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by CoCa"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b")]
100
 
101
  title = "Interactive demo: comparing image captioning models"
102
- description = "Gradio Demo to compare GIT, BLIP, CoCa, and BLIP-2, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
103
  article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
104
 
105
  interface = gr.Interface(fn=generate_captions,
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel, InstructBlipForConditionalGeneration
3
  import torch
4
  import open_clip
5
 
 
15
  git_processor_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
16
  git_model_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
17
 
18
+ # git_processor_large_textcaps = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
19
  # git_model_large_textcaps = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
20
 
21
  # blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
 
27
  # blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
28
  # blip2_model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16)
29
 
30
+ blip2_processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-6.7b")
31
+ blip2_model_4_bit = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-6.7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
32
+
33
+ instructblip_processor = AutoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
34
+ instructblip_model_4_bit = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto", load_in_4bit=True, torch_dtype=torch.float16)
35
 
36
  # vitgpt_processor = AutoImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
37
  # vitgpt_model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
38
  # vitgpt_tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
39
 
40
+ # coca_model, _, coca_transform = open_clip.create_model_and_transforms(
41
+ # model_name="coca_ViT-L-14",
42
+ # pretrained="mscoco_finetuned_laion2B-s13B-b90k"
43
+ # )
44
 
45
  device = "cuda" if torch.cuda.is_available() else "cpu"
46
 
 
50
  # git_model_large_textcaps.to(device)
51
  blip_model_large.to(device)
52
  # vitgpt_model.to(device)
53
+ # coca_model.to(device)
54
  # blip2_model.to(device)
55
 
56
  def generate_caption(processor, model, image, tokenizer=None, use_float_16=False):
 
76
  return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
77
 
78
 
79
+ def generate_caption_instructblip(processor, model, image):
80
+ prompt = "Generate a caption for the image:"
81
+
82
+ inputs = processor(images=image, text=prompt, return_tensors="pt").to(device=device, torch_dtype=torch.float16)
83
+
84
+ generated_ids = model.generate(pixel_values=inputs.pixel_values,
85
+ num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1)
86
+ generated_ids[generated_ids == 0] = 2 # TODO remove once https://github.com/huggingface/transformers/pull/24492 is merged
87
+
88
+ return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
89
+
90
+
91
  def generate_captions(image):
92
  # caption_git_base = generate_caption(git_processor_base, git_model_base, image)
93
 
 
101
 
102
  # caption_vitgpt = generate_caption(vitgpt_processor, vitgpt_model, image, vitgpt_tokenizer)
103
 
104
+ # caption_coca = generate_caption_coca(coca_model, coca_transform, image)
105
 
106
  # caption_blip2 = generate_caption(blip2_processor, blip2_model, image, use_float_16=True).strip()
107
 
108
+ caption_blip2_8_bit = generate_caption(blip2_processor, blip2_model_8_bit, image, use_float_16=True).strip()
109
+
110
+ caption_instructblip_4_bit = generate_caption_instructblip(instructblip_processor, instructblip_model_4_bit, image)
111
 
112
+ return caption_git_large_coco, caption_blip_large, caption_blip2_8_bit, caption_instructblip_4_bit
113
 
114
 
115
  examples = [["cats.jpg"], ["stop_sign.png"], ["astronaut.jpg"]]
116
+ outputs = [gr.outputs.Textbox(label="Caption generated by GIT-large fine-tuned on COCO"), gr.outputs.Textbox(label="Caption generated by BLIP-large"), gr.outputs.Textbox(label="Caption generated by BLIP-2 OPT 6.7b"), gr.outputs.Textbox(label="Caption generated by InstructBLIP"), ]
117
 
118
  title = "Interactive demo: comparing image captioning models"
119
+ description = "Gradio Demo to compare GIT, BLIP, BLIP-2 and InstructBLIP, 4 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
120
  article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
121
 
122
  interface = gr.Interface(fn=generate_captions,