File size: 6,426 Bytes
3ca90f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf545bf
3ca90f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf545bf
3ca90f6
 
 
 
 
 
 
 
 
 
 
cf545bf
3ca90f6
 
 
cf545bf
3ca90f6
 
 
 
cf545bf
 
 
 
 
 
 
 
 
3ca90f6
cf545bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ca90f6
 
cf545bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import time 
import json
from cerebras.cloud.sdk import Cerebras
from typing import List, Dict, Tuple, Any
from tenacity import retry, stop_after_attempt, wait_fixed

def make_api_call(api_key: str, messages: List[Dict[str, str]], max_tokens: int, is_final_answer: bool = False) -> Dict[str, Any]:
    """
    Make an API call to the Cerebras chat completions endpoint with retry logic.
    """
    client = Cerebras(api_key=api_key)
    
    try:
        response = client.chat.completions.create(
            model="llama3.1-70b",
            messages=messages,
            max_tokens=max_tokens,
            temperature=0.2,
            response_format={"type": "json_object"}
        )
        return json.loads(response.choices[0].message.content)
    except Exception as e:
        if is_final_answer:
            return {"title": "Error", "content": f"Failed to generate final answer. Error: {str(e)}"}
        else:
            return {"title": "Error", "content": f"Failed to generate step. Error: {str(e)}", "next_action": "final_answer"}

def generate_response(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str, float]], float]:
    """
    Generate a response to the given prompt using a step-by-step reasoning approach.
    """
    system_message = """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES."""
    
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": prompt},
        {"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."}
    ]
    
    steps = []
    step_count = 1
    total_thinking_time = 0
    
    while True:
        start_time = time.time()
        step_data = make_api_call(api_key, messages, 300)
        thinking_time = time.time() - start_time
        total_thinking_time += thinking_time
        
        steps.append((f"Step {step_count}: {step_data['title']}", step_data['content'], thinking_time))
        messages.append({"role": "assistant", "content": json.dumps(step_data)})
        
        if step_data.get('next_action') == 'final_answer':
            break
        
        step_count += 1

    messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
    
    start_time = time.time()
    final_data = make_api_call(api_key, messages, 200, is_final_answer=True)
    thinking_time = time.time() - start_time
    total_thinking_time += thinking_time
    
    steps.append(("Final Answer", final_data.get('content', 'No final answer provided.'), thinking_time))

    return steps, total_thinking_time

def generate_ui(api_key: str, prompt: str) -> Tuple[List[Tuple[str, str]], float]:
    """
    Generate the UI output based on the response to the given prompt.
    """
    steps, total_time = generate_response(api_key, prompt)
    conversation = []
    for title, content, _ in steps:
        if title.startswith("Step"):
            conversation.append(("Assistant", f"**{title}**\n\n{content}"))
        elif title == "Final Answer":
            conversation.append(("Assistant", f"**{title}**\n\n{content}"))
        else:
            conversation.append(("Assistant", content))
    return conversation, total_time

# Gradio Blocks Interface with a Chatbot component and API key input
def main():
    with gr.Blocks() as demo:
        gr.Markdown("# o1-like Chain of Thought - LLaMA-3.1 70B on Cerebras")
        gr.Markdown("""
        Implement Chain of Thought with prompting to improve output accuracy.
        Powered by Cerebras, ensuring fast reasoning steps.
        """)
        
        with gr.Row():
            api_key_input = gr.Textbox(
                label="Cerebras API Key", 
                type="password", 
                placeholder="Enter your Cerebras API key", 
                show_label=True
            )
        
        chatbot = gr.Chatbot(label="Conversation")
        with gr.Row():
            user_input = gr.Textbox(
                label="Your Query", 
                placeholder="Enter your query here...", 
                show_label=True
            )
            submit_btn = gr.Button("Submit")
        
        thinking_time_display = gr.Textbox(
            label="Total Thinking Time", 
            value="", 
            interactive=False
        )
        
        def respond(api_key, message, history):
            if not api_key:
                return history, "Please provide a valid Cerebras API key."

            steps, total_time = generate_response(api_key, message)
            for title, content, _ in steps:
                if title.startswith("Step"):
                    history.append(("Assistant", f"**{title}**\n\n{content}"))
                elif title == "Final Answer":
                    history.append(("Assistant", f"**{title}**\n\n{content}"))
                else:
                    history.append(("Assistant", content))
            return history, f"**Total thinking time:** {total_time:.2f} seconds"

        submit_btn.click(
            fn=respond, 
            inputs=[api_key_input, user_input, chatbot], 
            outputs=[chatbot, thinking_time_display],
            queue=True
        )
        
        # Optional: Allow pressing Enter to submit
        user_input.submit(
            fn=respond, 
            inputs=[api_key_input, user_input, chatbot], 
            outputs=[chatbot, thinking_time_display],
            queue=True
        )
    
    demo.launch()

if __name__ == "__main__":
    main()