Calvin
added bot
56ea6dd
raw
history blame
1.96 kB
import json
import os
from pprint import pprint
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
LoraConfig,
PeftConfig,
PeftModel,
get_peft_model,
prepare_model_for_kbit_training,
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
import gradio as gr
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
PEFT_MODEL = "cdy3870/Falcon-Fetch-Bot"
config = PeftConfig.from_pretrained(PEFT_MODEL)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, PEFT_MODEL)
generation_config = model.generation_config
generation_config.max_new_tokens = 200
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
def query_model(message, history):
prompt = f"""
<human>: {message}
<assistant>:
""".strip()
result = pipeline(
prompt,
generation_config=generation_config,
)
# parsed_result = result[0]["generated_text"].split("<assistant>:")[1][1:]
return parsed_result
gr.ChatInterface(query_model, textbox=gr.Textbox(placeholder="Ask anything about Fetch!", container=False, scale=7),).launch()