Spaces:
Runtime error
Runtime error
File size: 4,175 Bytes
1ffd672 f8d0565 ff1bae1 b3ebb49 8d7cf3a b3ebb49 dc83dff f8d0565 b3ebb49 4c71707 8d7cf3a b3ebb49 8112d7a f39c7a2 4c71707 b3ebb49 f8d0565 73363ec 663ac44 fa6f9dd 5caf6ad 0f7a10e df07559 74e2a8d df07559 73363ec 676b3fa 74e2a8d 676b3fa b77d75e df07559 f8d0565 4fbd840 1ec80fa f8d0565 0c3b1db 464e88d aae5aef 4fbd840 464e88d f8d0565 464e88d b3ebb49 1ec80fa 464e88d f8d0565 b3ebb49 4fbd840 f8d0565 1ffd672 b3ebb49 3db5979 4fbd840 3db5979 f8d0565 1ec80fa 464e88d f8d0565 5d2138a f9db145 c1f2f62 f083023 f9db145 8a4f01c 73363ec 9bc82fe f9db145 73363ec f083023 262f8cd ac96dc0 8a4f01c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import streamlit as st
import langcodes
from allosaurus.app import read_recognizer
from pathlib import Path
import string
from itertools import permutations
from collections import defaultdict
import torchaudio
@st.cache
def get_supported_codes():
model = read_recognizer()
supported_codes = []
supported_codes.append("ipa") # default option
for combo in permutations(string.ascii_lowercase, r=3):
code = "".join(combo)
if model.is_available(code):
supported_codes.append(code)
return supported_codes
def get_path_to_wav_format(uploaded_file, suppress_outputs=False):
# st.write(dir(uploaded_file))
# st.write(type(uploaded_file))
# st.write(uploaded_file)
uploaded_bytes = uploaded_file.getvalue()
actual_file_path = Path(uploaded_file.name)
actual_file_path.write_bytes(uploaded_bytes)
if ".wav" in uploaded_file.name:
return Path(uploaded_file.name)
if ".mp3" in uploaded_file.name:
new_desired_path = actual_file_path.with_suffix(".wav")
encoding="PCM_S" # Prevent encoding errors. https://stackoverflow.com/questions/60352850/wave-error-unknown-format-3-arises-when-trying-to-convert-a-wav-file-into-text
bits_per_sample=16
waveform, sample_rate = torchaudio.load(actual_file_path)
if not suppress_outputs:
st.info(f"Allosaurus requires .wav files. Converting with torchaudio, encoding={encoding}, bits_per_sample={bits_per_sample}")
st.info(f"Uploaded file sample_rate: {sample_rate}")
torchaudio.save(new_desired_path, waveform, sample_rate,
encoding=encoding,
bits_per_sample=bits_per_sample,
)
return new_desired_path
@st.cache
def get_langcode_description(input_code, url=False):
langcode = "ipa" # the default allosaurus recognizer
description = "the default universal setting, not specific to any language"
if not input_code or input_code==langcode:
return description
try:
lang = langcodes.get(input_code)
alpha3 = lang.to_alpha3()
langcode = alpha3
display_name = lang.display_name()
if url:
description = f"[{display_name}](https://iso639-3.sil.org/code/{alpha3})"
else:
description = display_name
except langcodes.LanguageTagError as e:
pass
return description
@st.cache
def get_langcode_with_description(input_code):
return f"{input_code}: {get_langcode_description(input_code)}"
if __name__ == "__main__":
# input_code = st.text_input("(optional) 2 or 3-letter ISO code for input language. 2-letter codes will be converted to 3-letter codes", max_chars=3)
supported_codes = get_supported_codes()
index_of_desired_default = supported_codes.index("ipa")
langcode = st.selectbox("ISO code for input language. Allosaurus doesn't need this, but it can improve accuracy",
options=supported_codes,
index=index_of_desired_default,
format_func=get_langcode_with_description
)
model = read_recognizer()
description = get_langcode_description(langcode, url=True)
st.write(f"Instructing Allosaurus to recognize using language {langcode}. That is, {description}")
uploaded_files = st.file_uploader("Choose a file", type=[
".wav",
".mp3",
],
accept_multiple_files=True,
)
results = {} # for better download/display
uploaded_files_count = len(uploaded_files)
suppress_output_threshold = 2
my_bar = st.progress(0)
for i, uploaded_file in enumerate(uploaded_files):
if uploaded_file is not None:
wav_file = get_path_to_wav_format(uploaded_file, uploaded_files_count>suppress_output_threshold)
result = model.recognize(wav_file, langcode)
results[uploaded_file.name] = result
my_bar.progress(i+1/uploaded_files_count)
st.write(results) |