Spaces:
Running
Running
import os | |
import torch | |
import modelscope | |
import huggingface_hub | |
import numpy as np | |
from torchvision.transforms import Compose, Resize, Normalize | |
EN_US = os.getenv("LANG") != "zh_CN.UTF-8" | |
ZH2EN = { | |
"上传录音": "Upload a recording", | |
"选择模型": "Select a model", | |
"状态栏": "Status", | |
"音频文件名": "Audio filename", | |
"古筝演奏技法逐帧检测": "Frame-level guzheng playing technique detection", | |
"建议录音时长不要过长": "It is suggested that the recording time should not be too long", | |
"引用": "Cite", | |
"颤音": "Vibrato", | |
"拨弦": "Plucks", | |
"上滑音": "Upward Portamento", | |
"下滑音": "Downward Portamento", | |
"花指\刮奏\连抹\连托": "Glissando", | |
"摇指": "Tremolo", | |
"点音": "Point Note", | |
"帧数": "Frame", | |
"技法": "Tech", | |
} | |
MODEL_DIR = ( | |
huggingface_hub.snapshot_download( | |
"ccmusic-database/Guzheng_Tech99", | |
cache_dir="./__pycache__", | |
) | |
if EN_US | |
else modelscope.snapshot_download( | |
"ccmusic-database/Guzheng_Tech99", | |
cache_dir="./__pycache__", | |
) | |
) | |
def _L(zh_txt: str): | |
return ZH2EN[zh_txt] if EN_US else zh_txt | |
TRANSLATE = { | |
"chanyin": _L("颤音"), # Vibrato | |
"boxian": _L("拨弦"), # Plucks | |
"shanghua": _L("上滑音"), # Upward Portamento | |
"xiahua": _L("下滑音"), # Downward Portamento | |
"huazhi/guazou/lianmo/liantuo": _L("花指\刮奏\连抹\连托"), # Glissando | |
"yaozhi": _L("摇指"), # Tremolo | |
"dianyin": _L("点音"), # Point Note | |
} | |
CLASSES = list(TRANSLATE.keys()) | |
TEMP_DIR = "./__pycache__/tmp" | |
SAMPLE_RATE = 44100 | |
HOP_LENGTH = 512 | |
TIME_LENGTH = 3 | |
def toCUDA(x): | |
if hasattr(x, "cuda"): | |
if torch.cuda.is_available(): | |
return x.cuda() | |
return x | |
def find_files(folder_path=f"{MODEL_DIR}/examples", ext=".flac"): | |
audio_files = [] | |
for root, _, files in os.walk(folder_path): | |
for file in files: | |
if file.endswith(ext): | |
file_path = os.path.join(root, file) | |
audio_files.append(file_path) | |
return audio_files | |
def get_modelist(model_dir=MODEL_DIR, assign_model=""): | |
pt_files = [] | |
for _, _, files in os.walk(model_dir): | |
for file in files: | |
if file.endswith(".pt"): | |
model = os.path.basename(file)[:-3] | |
if assign_model and assign_model.lower() in model: | |
pt_files.insert(0, model) | |
else: | |
pt_files.append(model) | |
return pt_files | |
def embed(input: list, img_size: int): | |
compose = Compose( | |
[ | |
Resize([img_size, img_size]), | |
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
] | |
) | |
inputs = [] | |
for x in input: | |
x = np.array(x).transpose(2, 0, 1) | |
x = torch.from_numpy(x).repeat(3, 1, 1) | |
x = torch.tensor(np.array([compose(x).float()])) | |
inputs.append(toCUDA(x)) | |
return inputs | |