Spaces:
Running
Running
File size: 2,975 Bytes
f1b22d5 dca18d5 f1b22d5 dca18d5 f1b22d5 dca18d5 f1b22d5 2b6113a f1b22d5 2f89051 f1b22d5 dca18d5 f1b22d5 dca18d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import os
import torch
import modelscope
import huggingface_hub
import numpy as np
from torchvision.transforms import Compose, Resize, Normalize
EN_US = os.getenv("LANG") != "zh_CN.UTF-8"
ZH2EN = {
"上传录音": "Upload a recording",
"选择模型": "Select a model",
"状态栏": "Status",
"音频文件名": "Audio filename",
"古筝演奏技法逐帧检测": "Frame-level guzheng playing technique detection",
"建议录音时长不要过长": "It is suggested that the recording time should not be too long",
"引用": "Cite",
"颤音": "Vibrato",
"拨弦": "Plucks",
"上滑音": "Upward Portamento",
"下滑音": "Downward Portamento",
"花指\刮奏\连抹\连托": "Glissando",
"摇指": "Tremolo",
"点音": "Point Note",
"帧数": "Frame",
"技法": "Tech",
}
MODEL_DIR = (
huggingface_hub.snapshot_download(
"ccmusic-database/Guzheng_Tech99",
cache_dir="./__pycache__",
)
if EN_US
else modelscope.snapshot_download(
"ccmusic-database/Guzheng_Tech99",
cache_dir="./__pycache__",
)
)
def _L(zh_txt: str):
return ZH2EN[zh_txt] if EN_US else zh_txt
TRANSLATE = {
"chanyin": _L("颤音"), # Vibrato
"boxian": _L("拨弦"), # Plucks
"shanghua": _L("上滑音"), # Upward Portamento
"xiahua": _L("下滑音"), # Downward Portamento
"huazhi/guazou/lianmo/liantuo": _L("花指\刮奏\连抹\连托"), # Glissando
"yaozhi": _L("摇指"), # Tremolo
"dianyin": _L("点音"), # Point Note
}
CLASSES = list(TRANSLATE.keys())
TEMP_DIR = "./__pycache__/tmp"
SAMPLE_RATE = 44100
HOP_LENGTH = 512
TIME_LENGTH = 3
def toCUDA(x):
if hasattr(x, "cuda"):
if torch.cuda.is_available():
return x.cuda()
return x
def find_files(folder_path=f"{MODEL_DIR}/examples", ext=".flac"):
audio_files = []
for root, _, files in os.walk(folder_path):
for file in files:
if file.endswith(ext):
file_path = os.path.join(root, file)
audio_files.append(file_path)
return audio_files
def get_modelist(model_dir=MODEL_DIR, assign_model=""):
pt_files = []
for _, _, files in os.walk(model_dir):
for file in files:
if file.endswith(".pt"):
model = os.path.basename(file)[:-3]
if assign_model and assign_model.lower() in model:
pt_files.insert(0, model)
else:
pt_files.append(model)
return pt_files
def embed(input: list, img_size: int):
compose = Compose(
[
Resize([img_size, img_size]),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
inputs = []
for x in input:
x = np.array(x).transpose(2, 0, 1)
x = torch.from_numpy(x).repeat(3, 1, 1)
x = torch.tensor(np.array([compose(x).float()]))
inputs.append(toCUDA(x))
return inputs
|