File size: 6,180 Bytes
f1b22d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import torchvision.models as models
from modelscope.msdatasets import MsDataset


class Interpolate(nn.Module):
    def __init__(
        self,
        size=None,
        scale_factor=None,
        mode="bilinear",
        align_corners=False,
    ):
        super(Interpolate, self).__init__()
        self.size = size
        self.scale_factor = scale_factor
        self.mode = mode
        self.align_corners = align_corners

    def forward(self, x):
        return F.interpolate(
            x,
            size=self.size,
            scale_factor=self.scale_factor,
            mode=self.mode,
            align_corners=self.align_corners,
        )


class EvalNet:
    def __init__(
        self,
        backbone: str,
        cls_num: int,
        ori_T: int,
        imgnet_ver="v1",
        weight_path="",
    ):
        if not hasattr(models, backbone):
            raise ValueError(f"Unsupported model {backbone}.")

        self.imgnet_ver = imgnet_ver
        self.training = bool(weight_path == "")
        self.type, self.weight_url, self.input_size = self._model_info(backbone)
        self.model: torch.nn.Module = eval("models.%s()" % backbone)
        self.ori_T = ori_T
        self.out_channel_before_classifier = 0
        self._set_channel_outsize()  # set out channel size
        self.cls_num = cls_num
        self._set_classifier()
        self._pseudo_foward()
        checkpoint = (
            torch.load(weight_path)
            if torch.cuda.is_available()
            else torch.load(weight_path, map_location="cpu")
        )  # self.model.load_state_dict(checkpoint, False)
        self.model.load_state_dict(checkpoint["model"], False)
        self.classifier.load_state_dict(checkpoint["classifier"], False)
        if torch.cuda.is_available():
            self.model = self.model.cuda()
            self.classifier = self.classifier.cuda()
        self.model.eval()

    def _get_backbone(self, backbone_ver, backbone_list):
        for backbone_info in backbone_list:
            if backbone_ver == backbone_info["ver"]:
                return backbone_info

        raise ValueError("[Backbone not found] Please check if --model is correct!")

    def _model_info(self, backbone: str):
        backbone_list = MsDataset.load(
            "monetjoe/cv_backbones",
            split=self.imgnet_ver,
            cache_dir="./__pycache__",
        )
        backbone_info = self._get_backbone(backbone, backbone_list)
        return (
            str(backbone_info["type"]),
            str(backbone_info["url"]),
            int(backbone_info["input_size"]),
        )

    def _create_classifier(self):
        original_T_size = self.ori_T
        upsample_module = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, None)),  # F -> 1
            nn.ConvTranspose2d(
                self.out_channel_before_classifier,
                256,
                kernel_size=(1, 4),
                stride=(1, 2),
                padding=(0, 1),
            ),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(256),
            nn.ConvTranspose2d(
                256, 128, kernel_size=(1, 4), stride=(1, 2), padding=(0, 1)
            ),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(128),
            nn.ConvTranspose2d(
                128, 64, kernel_size=(1, 4), stride=(1, 2), padding=(0, 1)
            ),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(64),
            nn.ConvTranspose2d(
                64, 32, kernel_size=(1, 4), stride=(1, 2), padding=(0, 1)
            ),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(32),  # input for Interp: [bsz, C, 1, T]
            Interpolate(
                size=(1, original_T_size), mode="bilinear", align_corners=False
            ),  # classifier
            nn.Conv2d(32, 32, kernel_size=(1, 1)),
            nn.ReLU(inplace=True),
            nn.BatchNorm2d(32),
            nn.Conv2d(32, self.cls_num, kernel_size=(1, 1)),
        )

        return upsample_module

    def _set_channel_outsize(self):  #### get the output size before classifier ####
        conv2d_out_ch = []
        for name, module in self.model.named_modules():
            if isinstance(module, torch.nn.Conv2d):
                conv2d_out_ch.append(module.out_channels)

            if (
                str(name).__contains__("classifier")
                or str(name).__eq__("fc")
                or str(name).__contains__("head")
            ):
                if isinstance(module, torch.nn.Conv2d):
                    conv2d_out_ch.append(module.in_channels)
                    break

        self.out_channel_before_classifier = conv2d_out_ch[-1]

    def _set_classifier(self):  #### set custom classifier ####
        if self.type == "resnet":
            self.model.avgpool = nn.Identity()
            self.model.fc = nn.Identity()
            self.classifier = self._create_classifier()

        elif (
            self.type == "vgg" or self.type == "efficientnet" or self.type == "convnext"
        ):
            self.model.avgpool = nn.Identity()
            self.model.classifier = nn.Identity()
            self.classifier = self._create_classifier()

        elif self.type == "squeezenet":
            self.model.classifier = nn.Identity()
            self.classifier = self._create_classifier()

    def get_input_size(self):
        return self.input_size

    def _pseudo_foward(self):
        temp = torch.randn(4, 3, self.input_size, self.input_size)
        out = self.model(temp)
        self.H = int(np.sqrt(out.size(1) / self.out_channel_before_classifier))

    def forward(self, x):
        if torch.cuda.is_available():
            x = x.cuda()

        if self.type == "convnext":
            out = self.model(x)
            out = self.classifier(out).squeeze()
            return out

        else:
            out = self.model(x)
            out = out.view(
                out.size(0), self.out_channel_before_classifier, self.H, self.H
            )
            out = self.classifier(out).squeeze()
            return out