Spaces:
Runtime error
Runtime error
File size: 9,544 Bytes
d6526de d7e5ae1 d74fc9d d6526de d7e5ae1 d6526de d7e5ae1 d6526de d7e5ae1 d6526de d7e5ae1 57ffe1d d6526de d7e5ae1 d6526de 2f404b6 d6526de 2f404b6 d6526de 2f404b6 d6526de d7e5ae1 d6526de 57ffe1d d6526de 57ffe1d d6526de 57ffe1d d6526de d7e5ae1 d6526de d7e5ae1 7db0ed5 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 7db0ed5 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d7e5ae1 2f404b6 d6526de 2f404b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
from gradio.flagging import FlaggingCallback
from gradio.components import IOComponent
from gradio_client import utils as client_utils
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
from sentence_transformers import util
import pickle
from PIL import Image
import os
import logging
import csv
import datetime
from pathlib import Path
from typing import List, Any
class SaveRelevanceCallback(FlaggingCallback):
""" Callback to save the image relevance state to a csv file
"""
def __init__(self):
pass
def setup(self, components: List[IOComponent], flagging_dir: str | Path):
"""
This method gets called once at the beginning of the Interface.launch() method.
Args:
components ([IOComponent]): Set of components that will provide flagged data.
flagging_dir (string): typically containing the path to the directory where the flagging file should be storied
(provided as an argument to Interface.__init__()).
"""
self.components = components
self.flagging_dir = flagging_dir
os.makedirs(flagging_dir, exist_ok=True)
logging.info(f"[SaveRelevance]: Flagging directory set to {flagging_dir}")
def flag(self,
flag_data: List[Any],
flag_option: str | None = None,
flag_index: int | None = None,
username: str | None = None,
) -> int:
"""
This gets called every time the <flag> button is pressed.
Args:
interface: The Interface object that is being used to launch the flagging interface.
flag_data: The data to be flagged.
flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
flag_index (optional): The index of the sample that is being flagged.
username (optional): The username of the user that is flagging the data, if logged in.
Returns:
(int): The total number of samples that have been flagged.
"""
logging.info("[SaveRelevance]: Flagging data...")
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "log.csv"
is_new = not Path(log_filepath).exists()
headers = ["query", "image directory", "relevance", "username", "timestamp"]
csv_data = []
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
if gr.utils.is_update(sample):
csv_data.append(str(sample))
else:
new_data = component.deserialize(sample, save_dir=save_dir) if sample is not None else ""
if new_data and idx == 1:
# TO-DO: change this to a more robust way of getting the image name/identifier
# This doesn't work - the directory contains all the images in gallery
new_data = new_data.split('/')[-1]
csv_data.append(new_data)
csv_data.append(str(datetime.datetime.now()))
with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
if is_new:
writer.writerow(gr.utils.sanitize_list_for_csv(headers))
writer.writerow(gr.utils.sanitize_list_for_csv(csv_data))
with open(log_filepath, "r", encoding="utf-8") as csvfile:
line_count = len([None for _ in csv.reader(csvfile)]) - 1
logging.info(f"[SaveRelevance]: Saved a total of {line_count} samples to {log_filepath}")
return line_count
## Define model
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
examples = [[("Dog in the beach"), 2, 'ghost'],
[("Paris during night."), 1, 'ghost'],
[("A cute kangaroo"), 5, 'ghost'],
[("Dois cachorros"), 2, 'ghost'],
[("un homme marchant sur le parc"), 3, 'ghost'],
[("et høyt fjell"), 2, 'ghost']]
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S')
#Open the precomputed embeddings
emb_filename = 'unsplash-25k-photos-embeddings.pkl'
with open(emb_filename, 'rb') as fIn:
img_names, img_emb = pickle.load(fIn)
#print(f'img_emb: {print(img_emb)}')
#print(f'img_names: {print(img_names)}')
# helper functions
def search_text(query, top_k=1):
"""" Search an image based on the text query.
Args:
query ([string]): query you want search for
top_k (int, optional): Amount of images o return]. Defaults to 1.
Returns:
[list]: list of images that are related to the query.
[list]: list of image embs that are related to the query.
"""
logging.info(f"[SearchText]: Searching for {query} with top_k={top_k}...")
# First, we encode the query.
inputs = tokenizer([query], padding=True, return_tensors="pt")
query_emb = model.get_text_features(**inputs)
# Then, we use the util.semantic_search function, which computes the cosine-similarity
# between the query embedding and all image embeddings.
# It then returns the top_k highest ranked images, which we output
hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]
image = []
for hit in hits:
#print(img_names[hit['corpus_id']])
object = Image.open(os.path.join(
"photos/", img_names[hit['corpus_id']]))
image.append(object)
# selected_image_embs.append(img_emb[hit['corpus_id']])
#print(f'array length is: {len(image)}')
logging.info(f"[SearchText]: Found {len(image)} images.")
return image
# def select_image(evt: gr.SelectData):
# """ Returns the index of the selected image
# Argrs:
# evt (SelectData): the event we are listening to
# Returns:
# int: index of the selected image
# """
# logging.info(f"[SelectImage]: Selected image {evt.index}.")
# return evt.index
callback = SaveRelevanceCallback()
with gr.Blocks() as demo:
# create display
gr.Markdown(
"""
# Text to Image using CLIP Model 📸
My version of the Gradio Demo fo CLIP model with the option to select relevance level of each image. \n
This demo is based on assessment for the 🤗 Huggingface course 2.
- To use it, simply write which image you are looking for. See the examples section below for more details.
- After you submit your query, you will see a gallery of images that are related to your query.
- You can select the relevance of each image by using the dropdown menu.
---
To-do:
- [ ] Add a way to save multiple image-relevance pairs at once.
- [ ] Improve image identification in the csv file.
"""
)
with gr.Row():
with gr.Column():
query = gr.Textbox(lines=4,
label="Write what you are looking for in an image...",
placeholder="Text Here...")
top_k = gr.Slider(0, 5, step=1, label="Top K relevant images to show")
username = gr.Textbox(lines=1, label="Input your unique username 👻 ", placeholder="Text username here...")
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[3], height="auto")
relevance = gr.Dropdown([str(i) for i in range(6)], multiselect=False,
label="How relevent is this image to your input text?")
with gr.Row():
with gr.Column():
submit_btn = gr.Button("Submit")
with gr.Column():
save_btn = gr.Button("Save after you select the relevance of each image")
gr.Markdown("## Here are some examples you can use:")
gr.Examples(examples, [query, top_k, username])
callback.setup([query, gallery, relevance, username], "flagged")
# when user input query and top_k
submit_btn.click(search_text, [query, top_k], [gallery])
# image_relevance_state = gr.State(value={})
# selected_index = gr.Number(value=0, visible=False, precision=0)
# when user select an image in the gallery
# gallery.select(select_image, None, selected_index)
# when user select the relevance of the image
# relevance.select(fn=select_image_relevance,
# inputs=[gallery, selected_index, image_relevance_state],
# outputs=image_relevance_state)
# when user click save button
# we will flag the current query, selected image, relevance, and username
save_btn.click(lambda *args: callback.flag(args), [query, gallery, relevance, username], preprocess=False)
# gallery_embs = []
gr.Markdown(
"""
You find more information about this demo on my ✨ github repository [marcelcastrobr](https://github.com/marcelcastrobr/huggingface_course2)
"""
)
if __name__ == "__main__":
demo.launch(debug=True)
|