File size: 9,544 Bytes
d6526de
d7e5ae1
d74fc9d
 
d6526de
d7e5ae1
d6526de
 
 
d7e5ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6526de
d7e5ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6526de
 
 
 
 
 
d7e5ae1
 
 
 
 
 
 
 
57ffe1d
d6526de
 
 
 
 
d7e5ae1
d6526de
2f404b6
 
d6526de
 
 
2f404b6
 
d6526de
 
2f404b6
 
d6526de
d7e5ae1
 
d6526de
 
 
57ffe1d
d6526de
 
 
 
57ffe1d
 
d6526de
 
57ffe1d
 
d6526de
d7e5ae1
d6526de
d7e5ae1
7db0ed5
2f404b6
d7e5ae1
 
2f404b6
d7e5ae1
 
2f404b6
d7e5ae1
 
 
 
 
2f404b6
 
d7e5ae1
2f404b6
 
 
 
 
 
d7e5ae1
 
 
 
 
 
 
2f404b6
d7e5ae1
2f404b6
d7e5ae1
 
 
2f404b6
 
 
 
 
 
 
d7e5ae1
 
2f404b6
 
 
 
d7e5ae1
2f404b6
 
 
 
 
d7e5ae1
2f404b6
d7e5ae1
 
 
2f404b6
 
7db0ed5
 
d7e5ae1
 
2f404b6
 
d7e5ae1
2f404b6
d7e5ae1
 
 
2f404b6
 
d7e5ae1
 
 
2f404b6
 
 
 
 
 
d6526de
2f404b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import gradio as gr
from gradio.flagging import FlaggingCallback
from gradio.components import IOComponent
from gradio_client import utils as client_utils
from transformers import CLIPProcessor, CLIPModel, CLIPTokenizer
from sentence_transformers import util
import pickle
from PIL import Image
import os
import logging
import csv
import datetime
from pathlib import Path
from typing import List, Any

class SaveRelevanceCallback(FlaggingCallback):
    """ Callback to save the image relevance state to a csv file
    """

    def __init__(self):
        pass

    def setup(self, components: List[IOComponent], flagging_dir: str | Path):
        """
        This method gets called once at the beginning of the Interface.launch() method.

        Args:
            components ([IOComponent]): Set of components that will provide flagged data.
            flagging_dir (string): typically containing the path to the directory where the flagging file should be storied 
                                   (provided as an argument to Interface.__init__()).
        """
        self.components = components
        self.flagging_dir = flagging_dir
        os.makedirs(flagging_dir, exist_ok=True)
        logging.info(f"[SaveRelevance]: Flagging directory set to {flagging_dir}")
    
    def flag(self,
             flag_data: List[Any],
             flag_option: str | None = None,
             flag_index: int | None = None,
             username: str | None = None,
             ) -> int:
        """
        This gets called every time the <flag> button is pressed.
        
        Args:
            interface: The Interface object that is being used to launch the flagging interface.
            flag_data: The data to be flagged.
            flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
            flag_index (optional): The index of the sample that is being flagged.
            username (optional): The username of the user that is flagging the data, if logged in.
        
        Returns:
        (int): The total number of samples that have been flagged.
        """
        logging.info("[SaveRelevance]: Flagging data...")
        flagging_dir = self.flagging_dir
        log_filepath = Path(flagging_dir) / "log.csv"
        is_new = not Path(log_filepath).exists()
        headers = ["query", "image directory", "relevance", "username", "timestamp"]

        csv_data = []
        for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
            save_dir = Path(
                flagging_dir
            ) / client_utils.strip_invalid_filename_characters(
                getattr(component, "label", None) or f"component {idx}"
            )
            if gr.utils.is_update(sample):
                csv_data.append(str(sample))
            else:
                new_data = component.deserialize(sample, save_dir=save_dir) if sample is not None else ""
                if new_data and idx == 1:
                    # TO-DO: change this to a more robust way of getting the image name/identifier
                    # This doesn't work - the directory contains all the images in gallery
                    new_data = new_data.split('/')[-1]
                csv_data.append(new_data)
        csv_data.append(str(datetime.datetime.now()))

        with open(log_filepath, "a", newline="", encoding="utf-8") as csvfile:
            writer = csv.writer(csvfile)
            if is_new:
                writer.writerow(gr.utils.sanitize_list_for_csv(headers))
            writer.writerow(gr.utils.sanitize_list_for_csv(csv_data))

        with open(log_filepath, "r", encoding="utf-8") as csvfile:
            line_count = len([None for _ in csv.reader(csvfile)]) - 1
        
        logging.info(f"[SaveRelevance]: Saved a total of {line_count} samples to {log_filepath}")
        return line_count

## Define model
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")

examples = [[("Dog in the beach"), 2, 'ghost'], 
            [("Paris during night."), 1, 'ghost'], 
            [("A cute kangaroo"), 5, 'ghost'],
            [("Dois cachorros"), 2, 'ghost'],
            [("un homme marchant sur le parc"), 3, 'ghost'],
            [("et høyt fjell"), 2, 'ghost']]

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s', datefmt='%d-%b-%y %H:%M:%S')

#Open the precomputed embeddings
emb_filename = 'unsplash-25k-photos-embeddings.pkl'
with open(emb_filename, 'rb') as fIn:
        img_names, img_emb = pickle.load(fIn)
        #print(f'img_emb: {print(img_emb)}')
        #print(f'img_names: {print(img_names)}')

# helper functions
def search_text(query, top_k=1):
    """" Search an image based on the text query.
    
    Args:
        query ([string]): query you want search for
        top_k (int, optional): Amount of images o return]. Defaults to 1.

    Returns:
        [list]: list of images that are related to the query.
        [list]: list of image embs that are related to the query.
    """
    logging.info(f"[SearchText]: Searching for {query} with top_k={top_k}...")
    
    # First, we encode the query.
    inputs = tokenizer([query],  padding=True, return_tensors="pt")
    query_emb = model.get_text_features(**inputs)

    # Then, we use the util.semantic_search function, which computes the cosine-similarity
    # between the query embedding and all image embeddings.
    # It then returns the top_k highest ranked images, which we output
    hits = util.semantic_search(query_emb, img_emb, top_k=top_k)[0]

    image = []
    for hit in hits:
        #print(img_names[hit['corpus_id']])
        object = Image.open(os.path.join(
            "photos/", img_names[hit['corpus_id']]))
        image.append(object)
        # selected_image_embs.append(img_emb[hit['corpus_id']])
        #print(f'array length is: {len(image)}')
    logging.info(f"[SearchText]: Found {len(image)} images.")
    return image

# def select_image(evt: gr.SelectData):
#     """ Returns the index of the selected image

#     Argrs:
#         evt (SelectData): the event we are listening to
    
#     Returns:
#         int: index of the selected image
#     """
#     logging.info(f"[SelectImage]: Selected image {evt.index}.")
#     return evt.index


callback = SaveRelevanceCallback()
with gr.Blocks() as demo:
    # create display
    gr.Markdown(
        """
        # Text to Image using CLIP Model 📸

        My version of the Gradio Demo fo CLIP model with the option to select relevance level of each image. \n
        This demo is based on assessment for the 🤗  Huggingface course 2.
        

        - To use it, simply write which image you are looking for. See the examples section below for more details.
        - After you submit your query, you will see a gallery of images that are related to your query.
        - You can select the relevance of each image by using the dropdown menu.

        ---

        To-do:
        - [ ]  Add a way to save multiple image-relevance pairs at once.
        - [ ]  Improve image identification in the csv file.
        """
    )
    with gr.Row():
        with gr.Column():
            query = gr.Textbox(lines=4, 
                                label="Write what you are looking for in an image...",
                                placeholder="Text Here...")
            top_k = gr.Slider(0, 5, step=1, label="Top K relevant images to show")
            username = gr.Textbox(lines=1, label="Input your unique username 👻 ", placeholder="Text username here...")
        with gr.Column():
            gallery = gr.Gallery(
                label="Generated images", show_label=False, elem_id="gallery"
                ).style(grid=[3], height="auto")
            relevance = gr.Dropdown([str(i) for i in range(6)], multiselect=False,
                                    label="How relevent is this image to your input text?")
    with gr.Row():
        with gr.Column():
            submit_btn = gr.Button("Submit")
        with gr.Column():
            save_btn = gr.Button("Save after you select the relevance of each image")
    gr.Markdown("## Here are some examples you can use:")
    gr.Examples(examples, [query, top_k, username])

    callback.setup([query, gallery, relevance, username], "flagged")
    
    # when user input query and top_k
    submit_btn.click(search_text, [query, top_k], [gallery])
    
    # image_relevance_state = gr.State(value={})
    # selected_index = gr.Number(value=0, visible=False, precision=0)
    
    # when user select an image in the gallery
    # gallery.select(select_image, None, selected_index)
    # when user select the relevance of the image
    # relevance.select(fn=select_image_relevance, 
    #                  inputs=[gallery, selected_index, image_relevance_state], 
    #                  outputs=image_relevance_state)
    
    # when user click save button
    # we will flag the current query, selected image, relevance, and username
    save_btn.click(lambda *args: callback.flag(args), [query, gallery, relevance, username], preprocess=False)
    # gallery_embs = []

    gr.Markdown(
        """
        You find more information about this demo on my ✨ github repository [marcelcastrobr](https://github.com/marcelcastrobr/huggingface_course2)
        """
    )

if __name__ == "__main__":
    demo.launch(debug=True)