RSU / app.py
carlosdimare's picture
Upload 3 files
31c2313 verified
raw
history blame
5.63 kB
import gradio as gr
from transformers import pipeline
import feedparser
from datetime import datetime, timedelta
import pytz
from bs4 import BeautifulSoup
import hashlib
import threading
import pandas as pd
# Global settings
SUMMARIZER_MODELS = {
"Default (facebook/bart-large-cnn)": "facebook/bart-large-cnn",
"Free Model (distilbart-cnn-6-6)": "sshleifer/distilbart-cnn-6-6"
}
CACHE_SIZE = 500
RSS_FETCH_INTERVAL = timedelta(hours=8)
ARTICLE_LIMIT = 5
NEWS_SOURCES = {
"Movilizaciones Sindicales": {
"Pagina12": "https://www.pagina12.com.ar/rss/edicion-impresa",
}
}
class NewsCache:
def __init__(self, size):
self.cache = {}
self.size = size
self.lock = threading.Lock()
def get(self, key):
with self.lock:
return self.cache.get(key)
def set(self, key, value):
with self.lock:
if len(self.cache) >= self.size:
oldest_key = next(iter(self.cache))
del self.cache[oldest_key]
self.cache[key] = value
cache = NewsCache(CACHE_SIZE)
def fetch_rss_news(categories):
articles = []
cutoff_time = datetime.now(pytz.UTC) - RSS_FETCH_INTERVAL
for category in categories:
for source, url in NEWS_SOURCES.get(category, {}).items():
try:
feed = feedparser.parse(url)
for entry in feed.entries:
published = datetime(*entry.published_parsed[:6], tzinfo=pytz.UTC)
if published > cutoff_time:
articles.append({
"title": entry.title,
"description": BeautifulSoup(entry.description, "html.parser").get_text(),
"link": entry.link,
"category": category,
"source": source,
"published": published
})
except Exception:
continue
articles = sorted(articles, key=lambda x: x["published"], reverse=True)[:ARTICLE_LIMIT]
return articles
def summarize_text(text, model_name):
summarizer = pipeline("summarization", model=model_name, device=-1)
content_hash = hashlib.md5(text.encode()).hexdigest()
cached_summary = cache.get(content_hash)
if cached_summary:
return cached_summary
try:
result = summarizer(text, max_length=120, min_length=40, truncation=True)
summary = result[0]['summary_text']
cache.set(content_hash, summary)
return summary
except Exception:
return "Summary unavailable."
def summarize_articles(articles, model_name):
summaries = []
for article in articles:
content = article["description"]
summary = summarize_text(content, model_name)
summaries.append(f"""
📰 {article['title']}
- 📁 Category: {article['category']}
- 💡 Source: {article['source']}
- 🔗 Read More: {article['link']}
📃 Summary: {summary}
""")
return "\n".join(summaries)
def generate_summary(selected_categories, model_name):
if not selected_categories:
return "Please select at least one category."
articles = fetch_rss_news(selected_categories)
if not articles:
return "No recent news found in the selected categories."
return summarize_articles(articles, model_name)
def fetch_union_mobilizations():
articles = []
cutoff_time = datetime.now(pytz.UTC) - timedelta(days=1)
for source, url in NEWS_SOURCES["Movilizaciones Sindicales"].items():
try:
feed = feedparser.parse(url)
for entry in feed.entries:
published = datetime(*entry.published_parsed[:6], tzinfo=pytz.UTC)
if published > cutoff_time:
# Filtrar por movilizaciones sindicales
if "movilización" in entry.title.lower() or "sindical" in entry.title.lower():
articles.append({
"title": entry.title,
"description": BeautifulSoup(entry.description, "html.parser").get_text(),
"link": entry.link,
"source": source,
"published": published
})
except Exception:
continue
return articles
def create_mobilization_table():
articles = fetch_union_mobilizations()
if not articles:
return "No se encontraron movilizaciones sindicales recientes."
# Crear una tabla con pandas
df = pd.DataFrame(articles)
return df.to_string(index=False)
# Gradio Interface
demo = gr.Blocks()
with demo:
gr.Markdown("# 📰 AI News Summarizer")
with gr.Row():
categories = gr.CheckboxGroup(
choices=list(NEWS_SOURCES.keys()),
label="Select News Categories"
)
model_selector = gr.Radio(
choices=list(SUMMARIZER_MODELS.keys()),
label="Choose Summarization Model",
value="Default (facebook/bart-large-cnn)"
)
summarize_button = gr.Button("Get News Summary")
summary_output = gr.Textbox(label="News Summary", lines=20)
def get_summary(selected_categories, selected_model):
model_name = SUMMARIZER_MODELS[selected_model]
return generate_summary(selected_categories, model_name)
summarize_button.click(get_summary, inputs=[categories, model_selector], outputs=summary_output)
if __name__ == "__main__":
demo.launch()