File size: 12,893 Bytes
96d88aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa817a6
96d88aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9b4100
 
 
 
 
 
 
 
 
 
 
 
 
 
f18103b
 
 
 
 
 
 
d9b4100
f18103b
 
 
d9b4100
 
 
 
 
 
 
 
 
 
 
 
 
 
f18103b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa817a6
 
 
 
 
 
f18103b
 
 
fa817a6
f18103b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa817a6
 
 
 
 
 
 
 
 
 
 
 
f18103b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467d298
fa817a6
 
 
 
 
 
 
f18103b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b779f
f18103b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
from langchain.chains import ConversationalRetrievalChain
from langchain.chains.question_answering import load_qa_chain
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.memory import ConversationTokenBufferMemory
from langchain.llms import HuggingFacePipeline
# from langchain import PromptTemplate
from langchain.prompts import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.document_loaders import (
    CSVLoader,
    DirectoryLoader,
    GitLoader,
    NotebookLoader,
    OnlinePDFLoader,
    PythonLoader,
    TextLoader,
    UnstructuredFileLoader,
    UnstructuredHTMLLoader,
    UnstructuredPDFLoader,
    UnstructuredWordDocumentLoader,
    WebBaseLoader,
    PyPDFLoader,
    UnstructuredMarkdownLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredPowerPointLoader,
    UnstructuredODTLoader,
    NotebookLoader,
    UnstructuredFileLoader
)
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    pipeline,
    GenerationConfig,
    TextStreamer,
    pipeline
)
from langchain.llms import HuggingFaceHub
import torch
from transformers import BitsAndBytesConfig
import os
from langchain.llms import CTransformers
import streamlit as st
from langchain.document_loaders.base import BaseLoader
from langchain.schema import Document
import gradio as gr
import tempfile
import timeit
import textwrap

FILE_LOADER_MAPPING = {
    "csv": (CSVLoader, {"encoding": "utf-8"}),
    "doc": (UnstructuredWordDocumentLoader, {}),
    "docx": (UnstructuredWordDocumentLoader, {}),
    "epub": (UnstructuredEPubLoader, {}),
    "html": (UnstructuredHTMLLoader, {}),
    "md": (UnstructuredMarkdownLoader, {}),
    "odt": (UnstructuredODTLoader, {}),
    "pdf": (PyPDFLoader, {}),
    "ppt": (UnstructuredPowerPointLoader, {}),
    "pptx": (UnstructuredPowerPointLoader, {}),
    "txt": (TextLoader, {"encoding": "utf8"}),
    "ipynb": (NotebookLoader, {}),
    "py": (PythonLoader, {}),
    # Add more mappings for other file extensions and loaders as needed
}

def load_model():
    config = {'max_new_tokens': 1024,
              'repetition_penalty': 1.1,
              'temperature': 0.1,
              'top_k': 50,
              'top_p': 0.9,
              'stream': True,
              'threads': int(os.cpu_count() / 2)
            }
    
    llm = CTransformers(
        model = "TheBloke/zephyr-7B-beta-GGUF",
        model_file = "zephyr-7b-beta.Q4_0.gguf",
        callbacks=[StreamingStdOutCallbackHandler()],
        lib="avx2", #for CPU use
        **config
        # model_type=model_type,
        # max_new_tokens=max_new_tokens,  # type: ignore
        # temperature=temperature,  # type: ignore
    )
    return llm

def create_vector_database(loaded_documents):
    # DB_DIR: str = os.path.join(ABS_PATH, "db")
    """
    Creates a vector database using document loaders and embeddings.
    This function loads data from PDF, markdown and text files in the 'data/' directory,
    splits the loaded documents into chunks, transforms them into embeddings using HuggingFace,
    and finally persists the embeddings into a Chroma vector database.
    """
    # Split loaded documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=30, length_function = len)
    chunked_documents = text_splitter.split_documents(loaded_documents)

    # embeddings = HuggingFaceBgeEmbeddings(
    #     model_name = "BAAI/bge-large-en"
    # )
    
    model_name = "BAAI/bge-large-en"
    model_kwargs = {'device': 'cpu'}
    encode_kwargs = {'normalize_embeddings': False}
    embeddings = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
    )
    
    persist_directory = 'db'
    # Create and persist a Chroma vector database from the chunked documents
    db = Chroma.from_documents(
        documents=chunked_documents,
        embedding=embeddings,
        persist_directory=persist_directory
        # persist_directory=DB_DIR,
    )
    db.persist()
    # db = Chroma(persist_directory=persist_directory, 
    #               embedding_function=embedding)
    return db

def set_custom_prompt():
    """
    Prompt template for retrieval for each vectorstore
    """
    prompt_template = """Use the following pieces of information to answer the user's question.
    If you don't know the answer, just say that you don't know, don't try to make up an answer.
    Context: {context}
    Question: {question}
    Only return the helpful answer below and nothing else.
    Helpful answer:
    """

    prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
    return prompt
    
def create_chain(llm, prompt, db):
    """
    Creates a Retrieval Question-Answering (QA) chain using a given language model, prompt, and database.
    This function initializes a ConversationalRetrievalChain object with a specific chain type and configurations,
    and returns this  chain. The retriever is set up to return the top 3 results (k=3).
    Args:
        llm (any): The language model to be used in the RetrievalQA.
        prompt (str): The prompt to be used in the chain type.
        db (any): The database to be used as the 
        retriever.
    Returns:
        ConversationalRetrievalChain: The initialized conversational chain.
    """
    memory = ConversationTokenBufferMemory(llm=llm, memory_key="chat_history", return_messages=True, input_key='question', output_key='answer')
    # chain = ConversationalRetrievalChain.from_llm(
    #     llm=llm,
    #     chain_type="stuff",
    #     retriever=db.as_retriever(search_kwargs={"k": 3}),
    #     return_source_documents=True,
    #     max_tokens_limit=256,
    #     combine_docs_chain_kwargs={"prompt": prompt},
    #     condense_question_prompt=CONDENSE_QUESTION_PROMPT,
    #     memory=memory,
    # )
    # chain = RetrievalQA.from_chain_type(llm=llm,
    #                                    chain_type='stuff',
    #                                    retriever=db.as_retriever(search_kwargs={'k': 3}),
    #                                    return_source_documents=True,
    #                                    chain_type_kwargs={'prompt': prompt}
    #                                    )
    chain = RetrievalQA.from_chain_type(llm=llm,
                                       chain_type='stuff',
                                       retriever=db.as_retriever(search_kwargs={'k': 3}),
                                       return_source_documents=True
                                       )
    return chain

def create_retrieval_qa_bot(loaded_documents):
    # if not os.path.exists(persist_dir):
    #       raise FileNotFoundError(f"No directory found at {persist_dir}")

    try:
        llm = load_model()  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to load model: {str(e)}")

    try:
        prompt = set_custom_prompt()  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to get prompt: {str(e)}")

    # try:
    #     CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()  # Assuming this function exists and works as expected
    # except Exception as e:
    #     raise Exception(f"Failed to get condense prompt: {str(e)}")

    try:
        db = create_vector_database(loaded_documents)  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to get database: {str(e)}")

    try:
        # qa = create_chain(
        #     llm=llm, prompt=prompt,CONDENSE_QUESTION_PROMPT=CONDENSE_QUESTION_PROMPT, db=db
        # )  # Assuming this function exists and works as expected
        qa = create_chain(
            llm=llm, prompt=prompt, db=db
        )  # Assuming this function exists and works as expected
    except Exception as e:
        raise Exception(f"Failed to create retrieval QA chain: {str(e)}")

    return qa

def wrap_text_preserve_newlines(text, width=110):
    # Split the input text into lines based on newline characters
    lines = text.split('\n')

    # Wrap each line individually
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]

    # Join the wrapped lines back together using newline characters
    wrapped_text = '\n'.join(wrapped_lines)

    return wrapped_text

def retrieve_bot_answer(query, loaded_documents):
    """
    Retrieves the answer to a given query using a QA bot.
    This function creates an instance of a QA bot, passes the query to it,
    and returns the bot's response.
    Args:
        query (str): The question to be answered by the QA bot.
    Returns:
        dict: The QA bot's response, typically a dictionary with response details.
    """
    qa_bot_instance = create_retrieval_qa_bot(loaded_documents)
    # bot_response = qa_bot_instance({"question": query})
    bot_response = qa_bot_instance({"query": query})
    # Check if the 'answer' key exists in the bot_response dictionary
    # if 'answer' in bot_response:
    #     # answer = bot_response['answer']
    #     return bot_response
    # else:
    #     raise KeyError("Expected 'answer' key in bot_response, but it was not found.")
    # result = bot_response['answer']
    
    # result = bot_response['result']
    # sources = []
    # for source in bot_response["source_documents"]:
    #     sources.append(source.metadata['source'])
    # return result, sources

    result = wrap_text_preserve_newlines(bot_response['result'])
    for source in bot_response["source_documents"]:
        sources.append(source.metadata['source'])
    return result, sources

def main():
   
    st.title("Docuverse")

    # Upload files
    uploaded_files = st.file_uploader("Upload your documents", type=["pdf", "md", "txt", "csv", "py", "epub", "html", "ppt", "pptx", "doc", "docx", "odt", "ipynb"], accept_multiple_files=True)
    loaded_documents = []

    if uploaded_files:
        # Create a temporary directory
        with tempfile.TemporaryDirectory() as td:
            # Move the uploaded files to the temporary directory and process them
            for uploaded_file in uploaded_files:
                st.write(f"Uploaded: {uploaded_file.name}")
                ext = os.path.splitext(uploaded_file.name)[-1][1:].lower()
                st.write(f"Uploaded: {ext}")

                # Check if the extension is in FILE_LOADER_MAPPING
                if ext in FILE_LOADER_MAPPING:
                    loader_class, loader_args = FILE_LOADER_MAPPING[ext]
                    # st.write(f"loader_class: {loader_class}")

                    # Save the uploaded file to the temporary directory
                    file_path = os.path.join(td, uploaded_file.name)
                    with open(file_path, 'wb') as temp_file:
                        temp_file.write(uploaded_file.read())

                    # Use Langchain loader to process the file
                    loader = loader_class(file_path, **loader_args)
                    loaded_documents.extend(loader.load())
                else:
                    st.warning(f"Unsupported file extension: {ext}")

        # st.write(f"loaded_documents: {loaded_documents}")  
        st.write("Chat with the Document:")
        query = st.text_input("Ask a question:")

        if st.button("Get Answer"):
            if query:
                # Load model, set prompts, create vector database, and retrieve answer
                try:
                    start = timeit.default_timer()
                    llm = load_model()
                    prompt = set_custom_prompt()
                    # CONDENSE_QUESTION_PROMPT = set_custom_prompt_condense()
                    db = create_vector_database(loaded_documents)
                    # st.write(f"db: {db}") 
                    result, sources = retrieve_bot_answer(query,loaded_documents)
                    end = timeit.default_timer()
                    st.write("Elapsed time:")
                    st.write(end - start)
                    # st.write(f"response: {response}") 
                    # Display bot response
                    st.write("Bot Response:")
                    st.write(result)
                    st.write(sources)
                except Exception as e:
                    st.error(f"An error occurred: {str(e)}")
            else:
                st.warning("Please enter a question.")

if __name__ == "__main__":
    main()