File size: 923 Bytes
a1ff351
 
ee33a25
a1ff351
ee33a25
a1ff351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from flask import Flask, request
from transformers import pipeline

app = Flask(__name__)

question_answerer = None

@app.before_first_request
def load_pipeline():
    global question_answerer
    question_answerer = pipeline("question-answering", "cancerfarore/bert-base-uncased-CancerFarore-Model", framework="tf")

@app.route("/answer", methods=["POST"])
def answer():
    global question_answerer
    obj = request.get_json()
    context = obj['context']
    question = obj['prompt']
    return {"reponse" : question_answerer(context=context, question=question)['answer'], "score" : question_answerer(context=context, question=question)['score']}

@app.route("/load_model", methods=["POST"])
def load_model():
    global question_answerer
    obj = request.get_json()
    model_name = obj['model']
    question_answerer = pipeline("question-answering", model_name, framework="tf")
    return f"Model {model_name}", 200