Spaces:
Build error
Build error
### title: 010125-daysoff-assistant-api | |
### file: app.py | |
import asyncio | |
import os | |
import time | |
import json | |
import torch | |
from api_docs_mck import daysoff_api_docs | |
import chainlit as cl | |
#from chainlit import LLMSettings # hmm.. | |
#from chainlit.config import config # hmm... | |
from langchain import hub | |
from langchain.chains import LLMChain, APIChain | |
from langchain_core.prompts import PromptTemplate | |
from langchain_community.llms import HuggingFaceHub | |
from langchain.memory.buffer import ConversationBufferMemory | |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
LANGCHAIN_API_KEY = os.environ.get("LANGCHAIN_API_KEY") | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
#os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:true" | |
dtype = torch.float16 | |
device = torch.device("cuda") | |
daysoff_assistant_booking_template = """ | |
You are a customer support assistant for Daysoff.no. Your expertise is | |
retrieving booking information for a given booking ID (โbestillingsnummerโ)" | |
Chat History: {chat_history} | |
Question: {question} | |
Answer: | |
""" | |
daysoff_assistant_booking_prompt= PromptTemplate( | |
input_variables=["chat_history", "question"], | |
template=daysoff_assistant_booking_template | |
) | |
api_url_template = """ | |
Given the following API Documentation for Daysoff's official | |
booking information API: {api_docs_mck} | |
Your task is to construct the most efficient API URL to answer | |
the user's question, ensuring the | |
call is optimized to include only the necessary information. | |
Question: {question} | |
API URL: | |
""" | |
api_url_prompt = PromptTemplate(input_variables=['api_docs_mck', 'question'], | |
template=api_url_template) | |
api_response_template = """" | |
With the API Documentation for Daysoff's official API: {api_docs_mck} | |
and the specific user question: {question} in mind, | |
and given this API URL: {api_url} for querying, here is the | |
response from Daysoff's API: {api_response}. | |
Please provide a summary that directly addresses the user's question, | |
omitting technical details like response format, and | |
focusing on delivering the answer with clarity and conciseness, | |
as if a human customer service agent is providing this information. | |
Adapt to user's language. By default, you speak Norwegian. | |
Summary: | |
""" | |
api_response_prompt = PromptTemplate(input_variables=['api_docs_mck', | |
'question', | |
'api_url', | |
'api_response'], | |
template=api_response_template) | |
# --model, memory object, and llm_chain | |
def setup_multiple_chains(): | |
llm = HuggingFaceHub(repo_id="google/gemma-2-2b-it", | |
temperature=0.7, | |
huggingface_api_token=HUGGINGFACEHUB_API_TOKEN, | |
device=device) | |
conversation_memory = ConversationBufferMemory(memory_key="chat_history", | |
max_len=200, | |
return_messages=True, | |
) | |
llm_chain = LLMChain(llm=llm, | |
prompt=daysoff_assistant_booking_prompt, | |
memory=conversation_memory | |
) | |
cl.user_session.set("llm_chain", llm_chain) | |
api_chain = APIChain.from_llm_and_api_docs_mck( | |
llm=llm, | |
api_docs_mck=daysoff_api_docs, | |
api_url_prompt=api_url_prompt, | |
api_response_prompt=api_response_prompt, | |
verbose=True, | |
limit_to_domains=None) | |
cl.user_session.set("api_chain", api_chain) | |
# --regex for alphanum. "LLLLLLxxxxxx", i.e. booking_id |==> 308.9 trillion unique possibilities | |
BOOKING_ID = r'\b[A-Z]{6}\d{6}\b' | |
# --keywords based from email-data | |
BOOKING_KEYWORDS = [ | |
"booking", | |
"bestillingsnummer", | |
"bookingen", | |
"ordrenummer", | |
"reservation", | |
"rezerwacji", | |
"bookingreferanse", | |
"rezerwacja", | |
"logg inn", | |
"booket", | |
"reservation number", | |
"bestilling", | |
"order number", | |
"booking ID", | |
"identyfikacyjny pลatnoลci" | |
] | |
# --wrapper function around the @cl.on_message decorator; chain trigger(s) | |
async def handle_message(message: cl.Message): | |
user_message = message.content.lower() | |
llm_chain = cl.user_session.get("llm_chain") | |
api_chain = cl.user_session.get("api_chain") | |
is_booking_query = any( | |
re.search(keyword, user_message, re.IGNORECASE) | |
for keyword in BOOKING_KEYWORDS + [BOOKING_ID] | |
) | |
if is_booking_query: | |
response = await api_chain.acall(user_message, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
else: | |
response = await llm_chain.acall(user_message, | |
callbacks=[cl.AsyncLangchainCallbackHandler()]) | |
response_key = "output" if "output" in response else "text" | |
await cl.Message(response.get(response_key, "")).send() | |
return message.content | |