camba1's picture
Create app.py
0622aeb verified
raw
history blame contribute delete
730 Bytes
import os
import warnings
import gradio as gr
from transformers import pipeline
from transformers.utils import logging
# Ignore warning that are not application related
logging.set_verbosity_error()
warnings.filterwarnings("ignore",category=FutureWarning)
warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`")
# Load model
image_captioning = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
# Perform inference
def launch(input):
out= image_captioning(input)
return out[0]['generated_text']
# Create the gradio interface
int_face = gr.Interface(
launch,
inputs=gr.Image(type="pil"),
outputs="text"
)
# Run the gradio interface
int_face.launch()