Spaces:
Sleeping
Sleeping
import os | |
import warnings | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.utils import logging | |
# Ignore warning that are not application related | |
logging.set_verbosity_error() | |
warnings.filterwarnings("ignore",category=FutureWarning) | |
warnings.filterwarnings("ignore", message="Using the model-agnostic default `max_length`") | |
# Load model | |
image_captioning = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
# Perform inference | |
def launch(input): | |
out= image_captioning(input) | |
return out[0]['generated_text'] | |
# Create the gradio interface | |
int_face = gr.Interface( | |
launch, | |
inputs=gr.Image(type="pil"), | |
outputs="text" | |
) | |
# Run the gradio interface | |
int_face.launch() |