Spaces:
Sleeping
Sleeping
cdupland
Merge branch 'main' of https://huggingface.co/spaces/bziiit/VEGETALIS_AI_API into main
46438d2
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_pinecone import PineconeVectorStore | |
from langchain_core.documents import Document | |
from langchain_openai import ChatOpenAI | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.prompts import PromptTemplate | |
from langchain_mistralai import ChatMistralAI | |
from uuid import uuid4 | |
from pydantic import BaseModel, Field | |
from langchain_core.tools import tool | |
import unicodedata | |
class AddToKnowledgeBase(BaseModel): | |
''' Add information to the knowledge base if the user asks for it in his query''' | |
information: str = Field(..., title="The information to add to the knowledge base") | |
def detect_language(text:str): | |
llm = ChatOpenAI(model="gpt-4o-mini",temperature=0) | |
template = "détecte la langue du texte suivant: {text}. rassure-toi que ta reponse contient seulement le nom de la langue detectée" | |
prompt = PromptTemplate.from_template(template) | |
chain = prompt | llm | StrOutputParser() | |
response = chain.invoke({"text": text}).strip().lower() | |
print(response) | |
return response | |
def remove_non_standard_ascii(input_string: str) -> str: | |
normalized_string = unicodedata.normalize('NFKD', input_string) | |
return ''.join(char for char in normalized_string if 'a' <= char <= 'z' or 'A' <= char <= 'Z' or char.isdigit() or char in ' .,!?') | |
def get_text_from_content_for_doc(content): | |
text = "" | |
for page in content: | |
text += content[page]["texte"] | |
return text | |
def get_text_from_content_for_audio(content): | |
return content["transcription"] | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=500, # the character length of the chunck | |
chunk_overlap=100, # the character length of the overlap between chuncks | |
length_function=len # the length function - in this case, character length (aka the python len() fn.) | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks,filename, file_type,namespace,index,enterprise_name): | |
try: | |
embedding = OpenAIEmbeddings(model="text-embedding-3-large") | |
vector_store = PineconeVectorStore(index=index, embedding=embedding,namespace=namespace) | |
file_name = filename.split(".")[0].replace(" ","_").replace("-","_").replace(".","_").replace("/","_").replace("\\","_").strip() | |
documents = [] | |
uuids = [] | |
for i, chunk in enumerate(text_chunks): | |
clean_filename = remove_non_standard_ascii(file_name) | |
document = Document( | |
page_content=chunk, | |
metadata={"filename":filename,"file_type":file_type, "filename_id":clean_filename, "entreprise_name":enterprise_name}, | |
) | |
uuid = f"{clean_filename}_{i}" | |
uuids.append(uuid) | |
documents.append(document) | |
vector_store.add_documents(documents=documents, ids=uuids) | |
return {"filename_id":clean_filename} | |
except Exception as e: | |
print(e) | |
return False | |
def add_to_knowledge_base(enterprise_id,information,index,enterprise_name,user_id=""): | |
''' Add information to the knowledge base | |
Args: | |
enterprise_id (str): the enterprise id | |
information (str): the information to add | |
index (str): the index name | |
''' | |
try: | |
embedding = OpenAIEmbeddings(model="text-embedding-3-large") | |
vector_store = PineconeVectorStore(index=index, embedding=embedding,namespace=enterprise_id) | |
uuids = [] | |
uuid = f"kb_{user_id}_{uuid4()}" | |
document = Document( | |
page_content=information, | |
metadata={"filename":"knowledge_base","file_type":"text", "filename_id":uuid, "entreprise_name":enterprise_name, "user_id":user_id}, | |
) | |
uuids.append(uuid) | |
vector_store.add_documents(documents=[document], ids=uuids) | |
return uuid | |
except Exception as e: | |
print(e) | |
return False | |
def get_retreive_answer(enterprise_id,prompt,index,common_id,user_id=""): | |
try: | |
print("common_id ",common_id) | |
embedding = OpenAIEmbeddings(model="text-embedding-3-large") | |
vector_store = PineconeVectorStore(index=index, embedding=embedding,namespace=enterprise_id) | |
retriever = vector_store.as_retriever( | |
search_type="similarity_score_threshold", | |
search_kwargs={"k": 3, "score_threshold": 0.6}, | |
) | |
enterprise_context = retriever.invoke(prompt) | |
user_memory = retriever.invoke(prompt,filters={"user_id":user_id}) | |
if enterprise_context: | |
print("found enterprise context") | |
for chunk in enterprise_context: | |
print(chunk.metadata) | |
else: | |
print("no enterprise context") | |
if common_id: | |
vector_store_commun = PineconeVectorStore(index=index, embedding=embedding,namespace=common_id) | |
retriever_commun = vector_store_commun.as_retriever( | |
search_type="similarity_score_threshold", | |
search_kwargs={"k": 5, "score_threshold": 0.1}, | |
) | |
commun_context = retriever_commun.invoke(prompt) | |
for chunk in commun_context: | |
print(chunk.metadata) | |
if commun_context: | |
print("found commun context") | |
else: | |
print("no commun context") | |
response = user_memory + enterprise_context + commun_context | |
else: | |
response = retriever.invoke(prompt) | |
return response | |
except Exception as e: | |
print(e) | |
return False | |
def handle_calling_add_to_knowledge_base(query,enterprise_id = "",index = "",enterprise_name = "",user_id = "",llm = None): | |
''' Handle the calling of the add_to_knowledge_base function | |
if the user, in his query, wants to add information to the knowledge base, the function will be called | |
''' | |
template = """ | |
You are an AI assistant that processes user queries. | |
Determine if the user wants to add something to the knowledge base. | |
- If the user wants to add something, extract the valuable information, reformulate and output 'add' followed by the information. | |
- If the user does not want to add something, output 'no action'. | |
Ensure your response is only 'add <content>' or 'no action'. | |
User Query: "{query}" | |
Response: | |
""".strip() | |
prompt = PromptTemplate.from_template(template) | |
if not llm: | |
llm = ChatOpenAI(model="gpt-4o",temperature=0) | |
llm_with_tool = llm.bind_tools([AddToKnowledgeBase]) | |
# template = "En tant qu'IA experte en marketing, tu travailles pour l'entreprise {enterprise}, si dans la question, il y a une demande d'ajout d'information à la base de connaissance, fait appel à la fonction add_to_knowledge_base en ajoutant l'information demandée, sinon, n'appelle pas la fonction. la question est la suivante: {query}" | |
# prompt = PromptTemplate.from_template(template) | |
chain = prompt | llm | StrOutputParser() | |
response = chain.invoke({"query": query}).strip().lower() | |
if response.startswith("add"): | |
item = response[len("add"):].strip() | |
if item: | |
item_id = add_to_knowledge_base(enterprise_id,item,index,enterprise_name,user_id) | |
print("added to knowledge base") | |
print(item) | |
return {"item_id":item_id,"item":item} | |
print(response) | |
return False | |
def generate_response_via_langchain(query: str, stream: bool = False, model: str = "gpt-4o",context:str="",messages = [],style:str="formel",tonality:str="neutre",template:str = "",enterprise_name:str="",enterprise_id:str="",index:str=""): | |
# Define the prompt template | |
if template == "": | |
template = "En tant qu'IA experte en marketing, réponds avec un style {style} et une tonalité {tonality} dans ta communcation pour l'entreprise {enterprise}, sachant le context suivant: {context}, et l'historique de la conversation, {messages}, {query}" | |
# Initialize the OpenAI LLM with the specified model | |
if model.startswith("gpt"): | |
llm = ChatOpenAI(model=model,temperature=0) | |
if model.startswith("mistral"): | |
llm = ChatMistralAI(model=model,temperature=0) | |
#handle_calling_add_to_knowledge_base(prompt.format(context=context,messages=messages,query=query,style=style,tonality=tonality,enterprise=enterprise_name)) | |
# if handle_calling_add_to_knowledge_base(query,enterprise_id,index,enterprise_name): | |
# template += " la base de connaissance a été mise à jour" | |
language = detect_language(query) | |
template += f" Reponds en {language}" | |
# Create an LLM chain with the prompt and the LLM | |
prompt = PromptTemplate.from_template(template) | |
print(f"model: {model}") | |
print(f"marque: {enterprise_name}") | |
llm_chain = prompt | llm | StrOutputParser() | |
print(f"language: {language}") | |
if stream: | |
# Return a generator that yields streamed responses | |
return llm_chain.astream({ "query": query, "context": context, "messages": messages, "style": style, "tonality": tonality, "enterprise":enterprise_name }) | |
# Invoke the LLM chain and return the result | |
return llm_chain.invoke({"query": query, "context": context, "messages": messages, "style": style, "tonality": tonality, "enterprise":enterprise_name}) | |
def setup_rag(file_type,content): | |
if file_type == "pdf": | |
text = get_text_from_content_for_doc(content) | |
elif file_type == "audio": | |
text = get_text_from_content_for_audio(content) | |
chunks = get_text_chunks(text) | |
vectorstore = get_vectorstore(chunks) | |
return vectorstore | |
def prompt_reformatting(prompt:str,context,query:str,style="formel",tonality="neutre",enterprise_name=""): | |
if context == "": | |
print("no context found for prompt reormatting") | |
return prompt.format(context="Pas de contexte pertinent",messages="",query=query,style=style,tonality=tonality,enterprise=enterprise_name) | |
docs_names = [] | |
print("context found for prompt reormatting") | |
for chunk in context: | |
print(chunk.metadata) | |
chunk_name = chunk.metadata["filename"] | |
if chunk_name not in docs_names: | |
docs_names.append(chunk_name) | |
context = ", ".join(docs_names) | |
prompt = prompt.format(context=context,messages="",query=query,style=style,tonality=tonality,enterprise=enterprise_name) | |
return prompt | |