VEGETALIS_AI_API / main.py
Ilyas KHIAT
tool db and laguage
679ccf5
raw
history blame
9.43 kB
from fastapi import FastAPI, HTTPException, UploadFile, File,Request,Depends,status
from fastapi.security import OAuth2PasswordBearer
from pydantic import BaseModel, Json
from uuid import uuid4, UUID
from typing import Optional
import pymupdf
from pinecone import Pinecone, ServerlessSpec
import os
from dotenv import load_dotenv
from rag import *
from fastapi.responses import StreamingResponse
import json
from prompts import *
from typing import Literal
from models import *
load_dotenv()
pinecone_api_key = os.environ.get("PINECONE_API_KEY")
common_namespace = os.environ.get("COMMON_NAMESPACE")
pc = Pinecone(api_key=pinecone_api_key)
import time
index_name = os.environ.get("INDEX_NAME") # change if desired
existing_indexes = [index_info["name"] for index_info in pc.list_indexes()]
if index_name not in existing_indexes:
pc.create_index(
name=index_name,
dimension=3072,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
)
while not pc.describe_index(index_name).status["ready"]:
time.sleep(1)
index = pc.Index(index_name)
api_keys = [os.environ.get("FASTAPI_API_KEY")]
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") # use token authentication
def api_key_auth(api_key: str = Depends(oauth2_scheme)):
if api_key not in api_keys:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Forbidden"
)
app = FastAPI(dependencies=[Depends(api_key_auth)])
# FASTAPI_KEY_NAME = os.environ.get("FASTAPI_KEY_NAME")
# FASTAPI_API_KEY = os.environ.get("FASTAPI_API_KEY")
# @app.middleware("http")
# async def api_key_middleware(request: Request, call_next):
# if request.url.path not in ["/","/docs","/openapi.json"]:
# api_key = request.headers.get(FASTAPI_KEY_NAME)
# if api_key != FASTAPI_API_KEY:
# raise HTTPException(status_code=403, detail="invalid API key :/")
# response = await call_next(request)
# return response
class StyleWriter(BaseModel):
style: Optional[str] = "neutral"
tonality: Optional[str] = "formal"
models = ["gpt-4o","gpt-4o-mini","mistral-large-latest"]
class UserInput(BaseModel):
prompt: str
enterprise_id: str
stream: Optional[bool] = False
messages: Optional[list[dict]] = []
style_tonality: Optional[StyleWriter] = None
marque: Optional[str] = None
model: Literal["gpt-4o","gpt-4o-mini","mistral-large-latest","o1-preview"] = "gpt-4o"
class EnterpriseData(BaseModel):
name: str
id: Optional[str] = None
filename: Optional[str] = None
tasks = []
@app.get("/")
def greet_json():
return {"Hello": "World!"}
@app.post("/upload")
async def upload_file(file: UploadFile, enterprise_data: Json[EnterpriseData]):
try:
# Read the uploaded file
contents = await file.read()
enterprise_name = enterprise_data.name.replace(" ","_").replace("-","_").replace(".","_").replace("/","_").replace("\\","_").strip()
if enterprise_data.filename is not None:
filename = enterprise_data.filename
else:
filename = file.filename
# Assign a new UUID if id is not provided
if enterprise_data.id is None:
clean_name = remove_non_standard_ascii(enterprise_name)
enterprise_data.id = f"{clean_name}_{uuid4()}"
# Open the file with PyMuPDF
pdf_document = pymupdf.open(stream=contents, filetype="pdf")
# Extract all text from the document
text = ""
for page in pdf_document:
text += page.get_text()
# Split the text into chunks
text_chunks = get_text_chunks(text)
# Create a vector store
vector_store = get_vectorstore(text_chunks, filename=filename, file_type="pdf", namespace=enterprise_data.id, index=index,enterprise_name=enterprise_name)
if vector_store:
return {
"file_name":filename,
"enterprise_id": enterprise_data.id,
"number_of_chunks": len(text_chunks),
"filename_id":vector_store["filename_id"],
"enterprise_name":enterprise_name
}
else:
raise HTTPException(status_code=500, detail="Could not create vector store")
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
finally:
await file.close()
@app.get("/documents/{enterprise_id}")
def get_documents(enterprise_id: str):
try:
docs_names = []
for ids in index.list(namespace=enterprise_id):
for id in ids:
name_doc = "_".join(id.split("_")[:-1])
if name_doc not in docs_names:
docs_names.append(name_doc)
return docs_names
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.delete("/documents/{enterprise_id}/{filename_id}")
def delete_document(enterprise_id: str, filename_id: str):
try:
for ids in index.list(prefix=f"{filename_id}_", namespace=enterprise_id):
index.delete(ids=ids, namespace=enterprise_id)
return {"message": "Document deleted", "chunks_deleted": ids}
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.delete("/documents/all/{enterprise_id}")
def delete_all_documents(enterprise_id: str):
try:
index.delete(namespace=enterprise_id,delete_all=True)
return {"message": "All documents deleted"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
import async_timeout
import asyncio
GENERATION_TIMEOUT_SEC = 60
async def stream_generator(response, prompt):
async with async_timeout.timeout(GENERATION_TIMEOUT_SEC):
try:
async for chunk in response:
if isinstance(chunk, bytes):
chunk = chunk.decode('utf-8') # Convert bytes to str if needed
yield json.dumps({"prompt": prompt, "content": chunk})
except asyncio.TimeoutError:
raise HTTPException(status_code=504, detail="Stream timed out")
@app.post("/generate-answer/")
def generate_answer(user_input: UserInput):
try:
prompt = user_input.prompt
enterprise_id = user_input.enterprise_id
template_prompt = base_template
context = get_retreive_answer(enterprise_id, prompt, index, common_namespace)
#final_prompt_simplified = prompt_formatting(prompt,template,context)
if not context:
context = ""
if user_input.style_tonality is None:
prompt_formated = prompt_reformatting(template_prompt,context,prompt,enterprise_name=getattr(user_input,"marque",""))
answer = generate_response_via_langchain(prompt,
model=getattr(user_input,"model","gpt-4o"),
stream=user_input.stream,context = context ,
messages=user_input.messages,
template=template_prompt,
enterprise_name=getattr(user_input,"marque",""),
enterprise_id=enterprise_id,
index=index)
else:
prompt_formated = prompt_reformatting(template_prompt,
context,
prompt,
style=getattr(user_input.style_tonality,"style","neutral"),
tonality=getattr(user_input.style_tonality,"tonality","formal"),
enterprise_name=getattr(user_input,"marque",""))
answer = generate_response_via_langchain(prompt,model=getattr(user_input,"model","gpt-4o"),
stream=user_input.stream,context = context ,
messages=user_input.messages,
style=getattr(user_input.style_tonality,"style","neutral"),
tonality=getattr(user_input.style_tonality,"tonality","formal"),
template=template_prompt,
enterprise_name=getattr(user_input,"marque",""),
enterprise_id=enterprise_id,
index=index)
if user_input.stream:
return StreamingResponse(stream_generator(answer,prompt_formated), media_type="application/json")
return {
"prompt": prompt_formated,
"answer": answer,
"context": context,
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.get("/models")
def get_models():
return {"models": models}