test
Browse files- app.py +8 -5
- chat_te.py +38 -29
- chat_with_pps.py +5 -2
- partie_prenante_carte.py +1 -1
app.py
CHANGED
@@ -9,7 +9,7 @@ from ActionsRSE import display_actions_rse
|
|
9 |
from AnalyseActionsRSE import display_analyse_actions_rse
|
10 |
from partiesprenantes import display_materiality_partiesprenantes
|
11 |
from partie_prenante_carte import display_pp
|
12 |
-
|
13 |
|
14 |
# Import modifiédes fonctions liées aux scripts
|
15 |
from projetRSE import display_rse_projects
|
@@ -22,6 +22,7 @@ from RAG_PDF_WEB import rag_pdf_web
|
|
22 |
from prompt import get_prompts_list,prompt_execution,execute_prompt
|
23 |
from chat_with_pps import display_chat
|
24 |
from high_chart import test_chart
|
|
|
25 |
|
26 |
def main():
|
27 |
st.markdown(":point_left: Cliquez pour vous inspirer", unsafe_allow_html=True)
|
@@ -70,7 +71,8 @@ def main():
|
|
70 |
[
|
71 |
"Audit flash RSE de vos contenus",
|
72 |
"Parties prenantes",
|
73 |
-
"Chatbot
|
|
|
74 |
]
|
75 |
)
|
76 |
|
@@ -87,7 +89,7 @@ def main():
|
|
87 |
# if selected_company:
|
88 |
# display_materiality_matrix(selected_company, data, bziiit_data)
|
89 |
|
90 |
-
elif ia_mode == "Chatbot
|
91 |
display_chat()
|
92 |
|
93 |
elif ia_mode == "Audit flash RSE de vos contenus":
|
@@ -101,8 +103,9 @@ def main():
|
|
101 |
|
102 |
# selected_prompt = prompt_execution()
|
103 |
# if selected_prompt:
|
104 |
-
# execute_prompt(selected_prompt)
|
105 |
-
|
|
|
106 |
|
107 |
elif section_principale == "Documentation":
|
108 |
display_documentation()
|
|
|
9 |
from AnalyseActionsRSE import display_analyse_actions_rse
|
10 |
from partiesprenantes import display_materiality_partiesprenantes
|
11 |
from partie_prenante_carte import display_pp
|
12 |
+
|
13 |
|
14 |
# Import modifiédes fonctions liées aux scripts
|
15 |
from projetRSE import display_rse_projects
|
|
|
22 |
from prompt import get_prompts_list,prompt_execution,execute_prompt
|
23 |
from chat_with_pps import display_chat
|
24 |
from high_chart import test_chart
|
25 |
+
from chat_te import display_chat_te
|
26 |
|
27 |
def main():
|
28 |
st.markdown(":point_left: Cliquez pour vous inspirer", unsafe_allow_html=True)
|
|
|
71 |
[
|
72 |
"Audit flash RSE de vos contenus",
|
73 |
"Parties prenantes",
|
74 |
+
"Chatbot partie prenante",
|
75 |
+
"Chatbot TE",
|
76 |
]
|
77 |
)
|
78 |
|
|
|
89 |
# if selected_company:
|
90 |
# display_materiality_matrix(selected_company, data, bziiit_data)
|
91 |
|
92 |
+
elif ia_mode == "Chatbot partie prenante":
|
93 |
display_chat()
|
94 |
|
95 |
elif ia_mode == "Audit flash RSE de vos contenus":
|
|
|
103 |
|
104 |
# selected_prompt = prompt_execution()
|
105 |
# if selected_prompt:
|
106 |
+
# execute_prompt(selected_prompt)
|
107 |
+
elif ia_mode == "Chatbot TE":
|
108 |
+
display_chat_te()
|
109 |
|
110 |
elif section_principale == "Documentation":
|
111 |
display_documentation()
|
chat_te.py
CHANGED
@@ -10,7 +10,24 @@ from langchain import hub
|
|
10 |
from langchain_core.prompts.prompt import PromptTemplate
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import OpenAIEmbeddings
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def get_conversation_chain(vectorstore):
|
16 |
llm = ChatOpenAI(model="gpt-4o",temperature=0.5, max_tokens=2048)
|
@@ -26,49 +43,44 @@ def get_conversation_chain(vectorstore):
|
|
26 |
)
|
27 |
return rag_chain
|
28 |
|
29 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
template = """
|
32 |
Chat history: {chat_history}
|
33 |
User question: {user_question}
|
34 |
"""
|
35 |
-
|
36 |
-
embeddings = OpenAIEmbeddings()
|
37 |
-
db = FAISS.load_local("vectorstore_op", embeddings)
|
38 |
|
39 |
question = ChatPromptTemplate.from_template(template)
|
40 |
question = question.format(chat_history=chat_history, user_question=user_query)
|
41 |
|
42 |
-
chain = get_conversation_chain(db)
|
43 |
-
|
44 |
return chain.stream(question)
|
45 |
|
46 |
-
def
|
47 |
-
if "pp_grouped" not in st.session_state or st.session_state['pp_grouped'] is None or len(st.session_state['pp_grouped']) == 0:
|
48 |
-
st.warning("Aucune partie prenante n'a été définie")
|
49 |
-
return None
|
50 |
-
plot = construct_plot()
|
51 |
-
st.plotly_chart(plot)
|
52 |
-
|
53 |
-
|
54 |
-
def display_chat():
|
55 |
# app config
|
56 |
st.title("Chatbot")
|
57 |
|
58 |
# session state
|
59 |
-
if "
|
60 |
-
st.session_state.
|
61 |
-
AIMessage(content="Salut,
|
62 |
]
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
# conversation
|
66 |
-
for message in st.session_state.
|
67 |
if isinstance(message, AIMessage):
|
68 |
with st.chat_message("AI"):
|
69 |
st.write(message.content)
|
70 |
-
if "cartographie des parties prenantes" in message.content:
|
71 |
-
display_chart()
|
72 |
elif isinstance(message, HumanMessage):
|
73 |
with st.chat_message("Moi"):
|
74 |
st.write(message.content)
|
@@ -76,15 +88,12 @@ def display_chat():
|
|
76 |
# user input
|
77 |
user_query = st.chat_input("Par ici...")
|
78 |
if user_query is not None and user_query != "":
|
79 |
-
st.session_state.
|
80 |
|
81 |
with st.chat_message("Moi"):
|
82 |
st.markdown(user_query)
|
83 |
|
84 |
with st.chat_message("AI"):
|
|
|
85 |
|
86 |
-
|
87 |
-
if "cartographie des parties prenantes" in message.content:
|
88 |
-
display_chart()
|
89 |
-
|
90 |
-
st.session_state.chat_history.append(AIMessage(content=response))
|
|
|
10 |
from langchain_core.prompts.prompt import PromptTemplate
|
11 |
from langchain_community.vectorstores import FAISS
|
12 |
from langchain_community.embeddings import OpenAIEmbeddings
|
13 |
+
from langchain_community.document_loaders import PyPDFLoader
|
14 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
def get_docs_from_pdf(file):
|
18 |
+
loader = PyPDFLoader(file)
|
19 |
+
docs = loader.load_and_split()
|
20 |
+
return docs
|
21 |
+
|
22 |
+
def get_doc_chunks(docs):
|
23 |
+
text_splitter = SemanticChunker(OpenAIEmbeddings())
|
24 |
+
chunks = text_splitter.split_documents(docs)
|
25 |
+
return chunks
|
26 |
+
|
27 |
+
def get_vectorstore_from_docs(doc_chunks):
|
28 |
+
embedding = OpenAIEmbeddings()
|
29 |
+
vectorstore = FAISS.from_documents(documents=doc_chunks, embedding=embedding)
|
30 |
+
return vectorstore
|
31 |
|
32 |
def get_conversation_chain(vectorstore):
|
33 |
llm = ChatOpenAI(model="gpt-4o",temperature=0.5, max_tokens=2048)
|
|
|
43 |
)
|
44 |
return rag_chain
|
45 |
|
46 |
+
def create_db(file):
|
47 |
+
docs = get_docs_from_pdf(file)
|
48 |
+
doc_chunks = get_doc_chunks(docs)
|
49 |
+
vectorstore = get_vectorstore_from_docs(doc_chunks)
|
50 |
+
return vectorstore
|
51 |
+
|
52 |
+
def get_response(chain,user_query, chat_history):
|
53 |
|
54 |
template = """
|
55 |
Chat history: {chat_history}
|
56 |
User question: {user_question}
|
57 |
"""
|
58 |
+
|
|
|
|
|
59 |
|
60 |
question = ChatPromptTemplate.from_template(template)
|
61 |
question = question.format(chat_history=chat_history, user_question=user_query)
|
62 |
|
|
|
|
|
63 |
return chain.stream(question)
|
64 |
|
65 |
+
def display_chat_te():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
# app config
|
67 |
st.title("Chatbot")
|
68 |
|
69 |
# session state
|
70 |
+
if "chat_history_te" not in st.session_state:
|
71 |
+
st.session_state.chat_history_te = [
|
72 |
+
AIMessage(content="Salut, posez-moi vos question sur la transistion ecologique."),
|
73 |
]
|
74 |
+
if "chain" not in st.session_state:
|
75 |
+
db=create_db("DATA_bziiit/op.pdf")
|
76 |
+
chain = get_conversation_chain(db)
|
77 |
+
st.session_state.chain = chain
|
78 |
|
79 |
# conversation
|
80 |
+
for message in st.session_state.chat_history_te:
|
81 |
if isinstance(message, AIMessage):
|
82 |
with st.chat_message("AI"):
|
83 |
st.write(message.content)
|
|
|
|
|
84 |
elif isinstance(message, HumanMessage):
|
85 |
with st.chat_message("Moi"):
|
86 |
st.write(message.content)
|
|
|
88 |
# user input
|
89 |
user_query = st.chat_input("Par ici...")
|
90 |
if user_query is not None and user_query != "":
|
91 |
+
st.session_state.chat_history_te.append(HumanMessage(content=user_query))
|
92 |
|
93 |
with st.chat_message("Moi"):
|
94 |
st.markdown(user_query)
|
95 |
|
96 |
with st.chat_message("AI"):
|
97 |
+
response = st.write_stream(get_response(st.session_state.chain,user_query, st.session_state.chat_history_te))
|
98 |
|
99 |
+
st.session_state.chat_history_te.append(AIMessage(content=response))
|
|
|
|
|
|
|
|
chat_with_pps.py
CHANGED
@@ -68,8 +68,9 @@ def display_chat():
|
|
68 |
st.session_state.chat_history = [
|
69 |
AIMessage(content="Salut, voici votre cartographie des parties prenantes. Que puis-je faire pour vous?"),
|
70 |
]
|
71 |
-
|
72 |
-
|
|
|
73 |
# conversation
|
74 |
for message in st.session_state.chat_history:
|
75 |
if isinstance(message, AIMessage):
|
@@ -81,6 +82,8 @@ def display_chat():
|
|
81 |
with st.chat_message("Moi"):
|
82 |
st.write(message.content)
|
83 |
|
|
|
|
|
84 |
# user input
|
85 |
user_query = st.chat_input("Par ici...")
|
86 |
if user_query is not None and user_query != "":
|
|
|
68 |
st.session_state.chat_history = [
|
69 |
AIMessage(content="Salut, voici votre cartographie des parties prenantes. Que puis-je faire pour vous?"),
|
70 |
]
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
# conversation
|
75 |
for message in st.session_state.chat_history:
|
76 |
if isinstance(message, AIMessage):
|
|
|
82 |
with st.chat_message("Moi"):
|
83 |
st.write(message.content)
|
84 |
|
85 |
+
if "pp_grouped" not in st.session_state or st.session_state['pp_grouped'] is None or len(st.session_state['pp_grouped']) == 0:
|
86 |
+
return None
|
87 |
# user input
|
88 |
user_query = st.chat_input("Par ici...")
|
89 |
if user_query is not None and user_query != "":
|
partie_prenante_carte.py
CHANGED
@@ -15,7 +15,7 @@ from langchain.llms import HuggingFaceHub
|
|
15 |
from langchain import hub
|
16 |
from langchain_core.output_parsers import StrOutputParser
|
17 |
from langchain_core.runnables import RunnablePassthrough
|
18 |
-
from langchain_community.document_loaders import WebBaseLoader,FireCrawlLoader
|
19 |
from langchain_core.prompts.prompt import PromptTemplate
|
20 |
from session import set_partie_prenante
|
21 |
import os
|
|
|
15 |
from langchain import hub
|
16 |
from langchain_core.output_parsers import StrOutputParser
|
17 |
from langchain_core.runnables import RunnablePassthrough
|
18 |
+
from langchain_community.document_loaders import WebBaseLoader,FireCrawlLoader
|
19 |
from langchain_core.prompts.prompt import PromptTemplate
|
20 |
from session import set_partie_prenante
|
21 |
import os
|