Carto-RSE / partie_prenante_carte.py
Ilyas KHIAT
correction
02c1715
raw
history blame
12.2 kB
import streamlit as st
import pandas as pd
import numpy as np
import re
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter,RecursiveCharacterTextSplitter
from langchain_experimental.text_splitter import SemanticChunker
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.chat_models import ChatOpenAI
from langchain.llms import HuggingFaceHub
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.prompts.prompt import PromptTemplate
import altair as alt
from session import set_partie_prenante
import os
from streamlit_vertical_slider import vertical_slider
from pp_viz import display_viz
from high_chart import test_chart
load_dotenv()
def get_docs_from_website(urls):
loader = WebBaseLoader(urls, header_template={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36',
})
try:
docs = loader.load()
return docs
except Exception as e:
return None
def get_doc_chunks(docs):
# Split the loaded data
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=500,
# chunk_overlap=100)
text_splitter = SemanticChunker(OpenAIEmbeddings())
docs = text_splitter.split_documents(docs)
return docs
def get_vectorstore_from_docs(doc_chunks):
embedding = OpenAIEmbeddings(model="text-embedding-3-large")
vectorstore = FAISS.from_documents(documents=doc_chunks, embedding=embedding)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI(model="gpt-4o",temperature=0.5, max_tokens=2048)
retriever=vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
# Chain
rag_chain = (
{"context": retriever , "question": RunnablePassthrough()}
| prompt
| llm
)
return rag_chain
# FILL THE PROMPT FOR THE QUESTION VARIABLE THAT WILL BE USED IN THE RAG PROMPT, ATTENTION NOT CONFUSE WITH THE RAG PROMPT
def fill_promptQ_template(input_variables, template):
prompt = PromptTemplate(input_variables=["BRAND_NAME","BRAND_DESCRIPTION"], template=template)
return prompt.format(BRAND_NAME=input_variables["BRAND_NAME"], BRAND_DESCRIPTION=input_variables["BRAND_DESCRIPTION"])
def text_to_list(text):
lines = text.replace("- ","").split('\n')
lines = [line.split() for line in lines]
items = [[' '.join(line[:-1]),line[-1]] for line in lines]
# Assuming `items` is the list of items
for item in items:
item[1] = re.sub(r'\D', '', item[1])
return items
def delete_pp(pps):
for pp in pps:
for i in range(len(st.session_state['pp_grouped'])):
if st.session_state['pp_grouped'][i]['name'] == pp:
del st.session_state['pp_grouped'][i]
break
def display_list_urls():
for index, item in enumerate(st.session_state["urls"]):
emp = st.empty() # Create an empty placeholder
col1, col2 = emp.columns([7, 3]) # Divide the space into two columns
# Button to delete the entry, placed in the second column
if col2.button("❌", key=f"but{index}"):
st.session_state["save"] = True
temp = st.session_state['parties_prenantes'][index]
delete_pp(temp)
del st.session_state.urls[index]
del st.session_state["parties_prenantes"][index]
st.experimental_rerun() # Rerun the app to update the display
if len(st.session_state.urls) > index:
# Instead of using markdown, use an expander in the first column
with col1.expander(f"URL {index}: {item}"):
pp = st.session_state["parties_prenantes"][index]
st.write(pd.DataFrame(pp, columns=["Partie prenante"]))
else:
emp.empty() # Clear the placeholder if the index exceeds the list
def display_list_pps():
for index, item in enumerate(st.session_state["pp_grouped"]):
emp = st.empty()
col1, col2 = emp.columns([7, 3])
if col2.button("❌", key=f"butp{index}"):
del st.session_state["pp_grouped"][index]
st.experimental_rerun()
if len(st.session_state["pp_grouped"]) > index:
name = st.session_state["pp_grouped"][index]["name"]
col1.markdown(f"{name}")
else:
emp.empty()
def extract_pp(urls,input_variables):
template_extraction_PP = '''
Objectif : identifiez tout les noms de marques qui sont des parties prenantes de la marque suivante pour développer un marketing de coopération (co-op marketing)
Le nom de la marque de référence est le suivant : {BRAND_NAME}
Son activité est la suivante : {BRAND_DESCRIPTION}
TA REPONSE DOIT ETRE SOUS FORME DE LISTE DE NOMS DE MARQUES SANS NUMEROTATION ET SEPARES PAR DES SAUTS DE LIGNE
SI TU NE TROUVES PAS DE NOM DE MARQUE, REPONDS "444"
'''
#don't forget to add the input variables from the maim function
docs = get_docs_from_website(urls)
if docs == None:
return "445"
#get text chunks
text_chunks = get_doc_chunks(docs)
#create vectorstore
vectorstore = get_vectorstore_from_docs(text_chunks)
chain = get_conversation_chain(vectorstore)
question = fill_promptQ_template(input_variables, template_extraction_PP)
response = chain.invoke(question)
# version plus poussée a considérer
# each item in the list is a list with the name of the brand and the similarity percentage
# partie_prenante = text_to_list(response.content)
#version simple
partie_prenante = response.content.replace("- ","").split('\n')
return partie_prenante
def format_pp_add_viz(pp):
y = 50
x = 50
for i in range(len(st.session_state['pp_grouped'])):
if st.session_state['pp_grouped'][i]['y'] == y and st.session_state['pp_grouped'][i]['x'] == x:
y += 5
if y > 95:
y = 50
x += 5
if st.session_state['pp_grouped'][i]['name'] == pp:
return None
else:
st.session_state['pp_grouped'].append({'name':pp, 'x':x,'y':y})
def add_pp(new_pp, default_value=50):
new_pp = sorted(new_pp)
new_pp = [item.lower().capitalize() for item in new_pp]
st.session_state['parties_prenantes'].append(new_pp)
for pp in new_pp:
format_pp_add_viz(pp)
def add_pp_input_text():
new_pp = st.text_input("Ajouter une partie prenante")
if st.button("Ajouter"):
st.session_state["save"] = True
format_pp_add_viz(new_pp)
import re
def complete_and_verify_url(partial_url):
# Regex pattern for validating a URL
regex = re.compile(
r'^(?:http|ftp)s?://' # http:// or https://
r'(?:(?:[A-Z0-9](?:[A-Z0-9-]{0,61}[A-Z0-9])?\.)+[A-Z]{2,6}\.?|' # domain
r'localhost|' # localhost...
r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})' # ...or ip
r'(?::\d+)?' # optional port
r'(?:/?|[/?]\S+)$', re.IGNORECASE)
# Complete the URL if it doesn't have http:// or https://
if not partial_url.startswith(('http://', 'https://', 'www.')):
if not partial_url.startswith('www.'):
complete_url = 'https://www.' + partial_url
else:
complete_url = 'https://' + partial_url
elif partial_url.startswith('www.'):
complete_url = 'https://' + partial_url
else:
complete_url = partial_url
# Check if the URL is valid
if re.match(regex, complete_url):
return (True, complete_url)
else:
return (False, complete_url)
def display_pp():
load_dotenv()
#check if brand name and description are already set
if "Nom de la marque" not in st.session_state:
st.session_state["Nom de la marque"] = ""
#check if urls and partie prenante are already set
if "urls" not in st.session_state:
st.session_state["urls"] = []
if "parties_prenantes" not in st.session_state:
st.session_state['parties_prenantes'] = []
if "pp_grouped" not in st.session_state: #servira pour le plot et la cartographie des parties prenantes, regroupe sans doublons
st.session_state['pp_grouped'] = []
if "save" not in st.session_state:
st.session_state["save"] = False
st.header("Parties prenantes de la marque")
#set brand name and description
brand_name = st.text_input("Nom de la marque", st.session_state["Nom de la marque"])
st.session_state["Nom de la marque"] = brand_name
option = st.radio("Source", ("A partir de votre site web", "A partir de vos documents entreprise"))
#if the user chooses to extract from website
if option == "A partir de votre site web":
url = st.text_input("Ajouter une URL")
#if the user clicks on the button
if st.button("ajouter"):
st.session_state["save"] = True
#complete and verify the url
is_valid,url = complete_and_verify_url(url)
if not is_valid:
st.error("URL invalide")
elif url in st.session_state["urls"] :
st.error("URL déjà ajoutée")
else:
docs = get_docs_from_website(url)
if docs is None:
st.error("Aucune url trouvée ou erreur lors de la récupération du contenu")
else:
# Création de l'expander
with st.expander("Cliquez ici pour éditer et voir le document"):
cleaned_text = re.sub(r'\n\n+', '\n\n', docs[0].page_content.strip())
text_value = st.text_area("Modifier le texte ci-dessous:", value=cleaned_text, height=300)
if st.button('Sauvegarder'):
st.success("Texte sauvegardé avec succès!")
with st.spinner("Processing..."):
#handle the extraction
input_variables = {"BRAND_NAME": brand_name, "BRAND_DESCRIPTION": ""}
partie_prenante = extract_pp([url], input_variables)
if "444" in partie_prenante: #444 is the code for no brand found , chosen
st.error("Aucune partie prenante trouvée")
elif "445" in partie_prenante: #445 is the code for no website found with the given url
st.error("Aucun site web trouvé avec l'url donnée")
else:
partie_prenante = sorted(partie_prenante)
st.session_state["urls"].append(url)
add_pp(partie_prenante)
# alphabet = [ pp[0] for pp in partie_prenante]
# pouvoir = [ 50 for _ in range(len(partie_prenante))]
# df = pd.DataFrame({'partie_prenante': partie_prenante, 'pouvoir': pouvoir, 'code couleur': partie_prenante})
# st.write(df)
# c = (
# alt.Chart(df)
# .mark_circle(size=300)
# .encode(x="partie_prenante", y=alt.Y("pouvoir",scale=alt.Scale(domain=[0,100])), color="code couleur")
# )
# st.subheader("Vertical Slider")
# age = st.slider("How old are you?", 0, 130, 25)
# st.write("I'm ", age, "years old")
# disp_vertical_slider(partie_prenante)
# st.altair_chart(c, use_container_width=True)
display_list_urls()
with st.expander("Liste des parties prenantes"):
add_pp_input_text()
display_list_pps()
test_chart()