Spaces:
Running
Running
Ilyas KHIAT
commited on
Commit
·
b31069e
1
Parent(s):
3d0e71b
first app
Browse files- __pycache__/audit_doc.cpython-312.pyc +0 -0
- app.py +95 -0
- requirements.txt +7 -0
- utils/audit/audit_audio.py +28 -0
- utils/audit/audit_doc.py +96 -0
__pycache__/audit_doc.cpython-312.pyc
ADDED
Binary file (3.69 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pymupdf as fitz
|
3 |
+
import pyperclip
|
4 |
+
from utils.audit.audit_doc import audit_descriptif
|
5 |
+
|
6 |
+
# Function to extract text from PDF
|
7 |
+
def extract_text_from_pdf(file):
|
8 |
+
document = fitz.open(stream=file.read(), filetype="pdf")
|
9 |
+
full_text = ""
|
10 |
+
for page_num in range(len(document)):
|
11 |
+
page = document.load_page(page_num)
|
12 |
+
text = page.get_text("text")
|
13 |
+
full_text += text
|
14 |
+
return full_text
|
15 |
+
|
16 |
+
# Function to classify file type
|
17 |
+
def classify_file(file):
|
18 |
+
if file.type.startswith("image/"):
|
19 |
+
return "image"
|
20 |
+
elif file.type == "application/pdf":
|
21 |
+
return "pdf"
|
22 |
+
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
23 |
+
return "word"
|
24 |
+
elif file.type.startswith("audio/"):
|
25 |
+
return "audio"
|
26 |
+
elif file.type.startswith("text/"):
|
27 |
+
return "text"
|
28 |
+
else:
|
29 |
+
return "unknown"
|
30 |
+
|
31 |
+
def main():
|
32 |
+
# Streamlit app
|
33 |
+
st.title("AUDIT DES DOCUMENTS")
|
34 |
+
|
35 |
+
if "audit" not in st.session_state:
|
36 |
+
st.session_state.audit = {}
|
37 |
+
if "name_file" not in st.session_state:
|
38 |
+
st.session_state.name_file = ""
|
39 |
+
|
40 |
+
# File uploader
|
41 |
+
uploaded_file = st.file_uploader("Télécharger un documents")
|
42 |
+
|
43 |
+
if uploaded_file is not None:
|
44 |
+
type = classify_file(uploaded_file)
|
45 |
+
if type == "pdf":
|
46 |
+
|
47 |
+
if st.session_state.name_file != uploaded_file.name:
|
48 |
+
st.session_state.name_file = uploaded_file.name
|
49 |
+
with st.spinner("Analyse du document..."):
|
50 |
+
st.session_state.audit = audit_descriptif(uploaded_file)
|
51 |
+
audit = st.session_state.audit
|
52 |
+
|
53 |
+
#global audit
|
54 |
+
audit_simplified = {
|
55 |
+
"Nombre de pages": audit["number_of_pages"],
|
56 |
+
"Nombre d'images": audit["number_of_images"],
|
57 |
+
"Nombre de liens": audit["number_of_links"],
|
58 |
+
"Nombre de tableaux": audit["number_of_tables"],
|
59 |
+
"Nombre de tokens": audit["number_of_tokens"],
|
60 |
+
"Nombre de mots": audit["number_of_words"]
|
61 |
+
}
|
62 |
+
|
63 |
+
well_formatted_audit = "Audit descriptif\n"
|
64 |
+
for key, value in audit_simplified.items():
|
65 |
+
well_formatted_audit += f"- {key}: {value}\n"
|
66 |
+
|
67 |
+
st.write("### Audit de tout le document")
|
68 |
+
st.code(well_formatted_audit)
|
69 |
+
|
70 |
+
#audit par page
|
71 |
+
with st.expander("Audit par page"):
|
72 |
+
number = st.number_input("Numéro de page", min_value=1, max_value=audit["number_of_pages"], value=1)
|
73 |
+
audit_page = audit[f"page_{number-1}"]
|
74 |
+
audit_page = {
|
75 |
+
"Nombre d'images": audit_page["number_of_images"],
|
76 |
+
"Nombre de liens": audit_page["number_of_links"],
|
77 |
+
"Nombre de tableaux": audit_page["number_of_tables"],
|
78 |
+
"Nombre de tokens": audit_page["number_of_tokens"],
|
79 |
+
"Nombre de mots": audit_page["number_of_words"]
|
80 |
+
}
|
81 |
+
well_formatted_audit_page = "Audit descriptif\n"
|
82 |
+
for key, value in audit_page.items():
|
83 |
+
well_formatted_audit_page += f"- {key}: {value}\n"
|
84 |
+
|
85 |
+
st.code(well_formatted_audit_page)
|
86 |
+
|
87 |
+
# # Button to copy text to clipboard
|
88 |
+
# if st.button("Copy to Clipboard"):
|
89 |
+
# pyperclip.copy(audit)
|
90 |
+
# st.success("Text copied to clipboard successfully!")
|
91 |
+
# else:
|
92 |
+
# st.info("Please upload a PDF file to extract text.")
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pyperclip
|
3 |
+
tiktoken
|
4 |
+
pydub
|
5 |
+
numpy
|
6 |
+
scipy
|
7 |
+
textstat
|
utils/audit/audit_audio.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import scipy.io.wavfile as wavfile
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import io
|
6 |
+
|
7 |
+
# Function to calculate SNR
|
8 |
+
def calculate_snr(audio_data):
|
9 |
+
signal = audio_data
|
10 |
+
noise = audio_data - np.mean(audio_data)
|
11 |
+
signal_power = np.mean(signal ** 2)
|
12 |
+
noise_power = np.mean(noise ** 2)
|
13 |
+
snr = 10 * np.log10(signal_power / noise_power)
|
14 |
+
return snr
|
15 |
+
|
16 |
+
# Function to evaluate audio quality
|
17 |
+
def evaluate_audio_quality(file):
|
18 |
+
audio = AudioSegment.from_file(file)
|
19 |
+
audio_data = np.array(audio.get_array_of_samples())
|
20 |
+
|
21 |
+
# Calculate volume
|
22 |
+
volume = audio.dBFS
|
23 |
+
|
24 |
+
# Calculate SNR
|
25 |
+
snr = calculate_snr(audio_data)
|
26 |
+
|
27 |
+
return volume, snr
|
28 |
+
|
utils/audit/audit_doc.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import pymupdf
|
3 |
+
import tiktoken
|
4 |
+
import textstat
|
5 |
+
|
6 |
+
|
7 |
+
def evaluate_text_quality(text: str) -> dict:
|
8 |
+
# Calculate readability metrics
|
9 |
+
flesch_reading_ease = textstat.flesch_reading_ease(text)
|
10 |
+
flesch_kincaid_grade = textstat.flesch_kincaid_grade(text)
|
11 |
+
gunning_fog = textstat.gunning_fog(text)
|
12 |
+
smog_index = textstat.smog_index(text)
|
13 |
+
automated_readability_index = textstat.automated_readability_index(text)
|
14 |
+
|
15 |
+
# Normalize readability scores to a 0-1 scale
|
16 |
+
def normalize_score(score, min_score, max_score):
|
17 |
+
return (score - min_score) / (max_score - min_score)
|
18 |
+
|
19 |
+
# Normalize each readability score
|
20 |
+
n_flesch_reading_ease = normalize_score(flesch_reading_ease, 0, 100)
|
21 |
+
n_flesch_kincaid_grade = 1 - normalize_score(flesch_kincaid_grade, 0, 18) # Higher is more difficult
|
22 |
+
n_gunning_fog = 1 - normalize_score(gunning_fog, 0, 18) # Higher is more difficult
|
23 |
+
n_smog_index = 1 - normalize_score(smog_index, 0, 18) # Higher is more difficult
|
24 |
+
n_automated_readability_index = 1 - normalize_score(automated_readability_index, 0, 18) # Higher is more difficult
|
25 |
+
|
26 |
+
# Weights for each metric (adjust these as needed)
|
27 |
+
weights = {
|
28 |
+
"flesch_reading_ease": 0.25,
|
29 |
+
"flesch_kincaid_grade": 0.25,
|
30 |
+
"gunning_fog": 0.2,
|
31 |
+
"smog_index": 0.15,
|
32 |
+
"automated_readability_index": 0.15
|
33 |
+
}
|
34 |
+
|
35 |
+
# Calculate the global readability score
|
36 |
+
global_score = (
|
37 |
+
n_flesch_reading_ease * weights["flesch_reading_ease"] +
|
38 |
+
n_flesch_kincaid_grade * weights["flesch_kincaid_grade"] +
|
39 |
+
n_gunning_fog * weights["gunning_fog"] +
|
40 |
+
n_smog_index * weights["smog_index"] +
|
41 |
+
n_automated_readability_index * weights["automated_readability_index"]
|
42 |
+
)
|
43 |
+
|
44 |
+
# Scale the global score to 0-5
|
45 |
+
global_score_0_5 = global_score * 5
|
46 |
+
|
47 |
+
def count_tokens(input_string: str) -> int:
|
48 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
49 |
+
tokens = tokenizer.encode(input_string)
|
50 |
+
return len(tokens)
|
51 |
+
|
52 |
+
def audit_descriptif(file) -> dict:
|
53 |
+
document = pymupdf.open(stream=file.read())
|
54 |
+
|
55 |
+
audit_dict_doc = {
|
56 |
+
"number_of_pages": len(document),
|
57 |
+
"number_of_images": 0,
|
58 |
+
"number_of_links": 0,
|
59 |
+
"number_of_tables": 0,
|
60 |
+
"number_of_tokens": 0,
|
61 |
+
"number_of_words": 0
|
62 |
+
}
|
63 |
+
|
64 |
+
for page in document:
|
65 |
+
|
66 |
+
audit_dict_page = {}
|
67 |
+
#number of images
|
68 |
+
number_images = len(page.get_images())
|
69 |
+
audit_dict_page["number_of_images"] = number_images
|
70 |
+
audit_dict_doc["number_of_images"] += number_images
|
71 |
+
|
72 |
+
|
73 |
+
#number of links
|
74 |
+
number_links = len(page.get_links())
|
75 |
+
audit_dict_page["number_of_links"] = number_links
|
76 |
+
audit_dict_doc["number_of_links"] += number_links
|
77 |
+
|
78 |
+
#number of tables
|
79 |
+
number_tables = len(page.find_tables().tables)
|
80 |
+
audit_dict_page["number_of_tables"] = number_tables
|
81 |
+
audit_dict_doc["number_of_tables"] += number_tables
|
82 |
+
|
83 |
+
#number of tokens and words
|
84 |
+
text = page.get_text("text")
|
85 |
+
number_tokens = count_tokens(text)
|
86 |
+
number_words = len(text.split())
|
87 |
+
|
88 |
+
audit_dict_page["number_of_tokens"] = count_tokens(text)
|
89 |
+
audit_dict_page["number_of_words"] = len(text.split())
|
90 |
+
|
91 |
+
audit_dict_doc["number_of_tokens"] += number_tokens
|
92 |
+
audit_dict_doc["number_of_words"] += number_words
|
93 |
+
|
94 |
+
audit_dict_doc[f"page_{page.number}"] = audit_dict_page
|
95 |
+
|
96 |
+
return audit_dict_doc
|