File size: 7,716 Bytes
6237635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from __future__ import division
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib.patches as patches
import random

theta = 0.5
AU = (149.6e6 * 1000)     # 149.6 million km, in meters.
G = 6.67408e-11 #m^3 kg^-1 s^-2
fig1 = plt.figure()
sim = fig1.add_subplot(111, aspect='equal')
fig2 = plt.figure()
quadt = fig2.add_subplot(111, aspect='equal')

class Node:
    children = None
    mass = None
    center_of_mass = None
    bbox = None
    vx = vy = None

def quad_insert(root, x, y, m):
    if root.mass is None:   #when the root is empty, add the first particle
        root.mass = m
        root.center_of_mass = [x,y]
        return
    elif root.children is None:
        root.children = [None,None,None,None]
        old_quadrant = quadrant_of_particle(root.bbox, root.center_of_mass[0], root.center_of_mass[1])
        if root.children[old_quadrant] is None:
            root.children[old_quadrant] = Node()
            root.children[old_quadrant].bbox = quadrant_bbox(root.bbox,old_quadrant)
        quad_insert(root.children[old_quadrant], root.center_of_mass[0], root.center_of_mass[1], root.mass)
        new_quadrant = quadrant_of_particle(root.bbox, x, y)
        if root.children[new_quadrant] is None:
            root.children[new_quadrant] = Node()
            root.children[new_quadrant].bbox = quadrant_bbox(root.bbox,new_quadrant)
        quad_insert(root.children[new_quadrant], x, y, m)
        root.center_of_mass[0] = (root.center_of_mass[0]*root.mass + x*m) / (root.mass + m)
        root.center_of_mass[1] = (root.center_of_mass[1]*root.mass + y*m) / (root.mass + m)
        root.mass = root.mass + m
    else:
        new_quadrant = quadrant_of_particle(root.bbox, x, y)
        if root.children[new_quadrant] is None:
            root.children[new_quadrant] = Node()
            root.children[new_quadrant].bbox = quadrant_bbox(root.bbox, new_quadrant)
        quad_insert(root.children[new_quadrant], x, y, m)
        root.center_of_mass[0] = (root.center_of_mass[0]*root.mass + x*m) / (root.mass + m)
        root.center_of_mass[1] = (root.center_of_mass[1]*root.mass + y*m) / (root.mass + m)
        root.mass = root.mass + m

def display(root):
    if root.mass is None:
        return
    if root.children is not None:
        x = (root.bbox[0] + root.bbox[1]) / 2
        y = (root.bbox[2] + root.bbox[3]) / 2
        width = x-root.bbox[0]
        plt_node(root.bbox[0], root.bbox[2], width)
        plt_node(root.bbox[0], y, width)
        plt_node(x, root.bbox[2], width)
        plt_node(x, y, width)
        for i in xrange(4):
            if root.children[i] is not None:
                display(root.children[i])
    else:
        quadt.scatter(root.center_of_mass[0], root.center_of_mass[1])

def integrate(particles):
    bodies = particles
    n = len(bodies)
    timestep = 24*3600 #one day
    years = 2 * 365 #how many Earth years that simulate
    for day in xrange(years):
        particles_force = {}
        root = Node()
        root.center_of_mass = []
        root.bbox = find_root_bbox(bodies)
        for i in xrange(n):
            quad_insert(root, bodies[i][3], bodies[i][4], bodies[i][2])
        for i in xrange(n):
            total_fx, total_fy = compute_force(root,bodies[i][3],bodies[i][4],bodies[i][2])
            particles_force[bodies[i][0]] = (total_fx, total_fy)
        for i in xrange(n):
            fx, fy = particles_force[bodies[i][0]]
            bodies[i][5] += fx / bodies[i][2] * timestep
            bodies[i][6] += fy / bodies[i][2] * timestep

            bodies[i][3] += bodies[i][5] * timestep
            bodies[i][4] += bodies[i][6] * timestep
            sim.scatter(bodies[i][3], bodies[i][4], c=bodies[i][1])
    display(root)
    quadt.scatter(root.center_of_mass[0], root.center_of_mass[1], c='red', marker='x')

def compute_force(root,x,y,m):
    if root.mass is None:
        return 0, 0
    if root.center_of_mass[0] == x and root.center_of_mass[1] == y and root.mass == m:
        return 0, 0
    d = root.bbox[1]-root.bbox[0]
    r = distance(x,y, root.center_of_mass[0], root.center_of_mass[1])
    if d/r < theta or root.children is None:
        return force(m, x, y, root.mass, root.center_of_mass[0], root.center_of_mass[1])
    else:
        fx = 0.0
        fy = 0.0
        for i in xrange(4):
            if root.children[i] is not None:
                fx += compute_force(root.children[i],x,y,m)[0]
                fy += compute_force(root.children[i],x,y,m)[1]
        return fx, fy

################################################# SUPPORTING FUNCTION ##############################################################

def force(m, x, y, mcm, xcm, ycm):
    d = distance(x, y, xcm, ycm)
    f = G*m*mcm/(d**2)
    dx = xcm - x
    dy = ycm - y
    angle = math.atan2(dy, dx)
    fx = math.cos(angle) * f
    fy = math.sin(angle) * f
    return fx, fy

def distance(x1, y1, x2, y2):
    return math.sqrt((x2-x1)**2+(y2-y1)**2)

def plt_node(x, y, width):
    quadt.add_patch(patches.Rectangle((x, y), width, width, fill = False))

def find_root_bbox(array):
    """ Create a suitable square boundary box for the input particles
    """
    if len(array) == 0 or len(array) == 1:
        return None
    xmin, xmax, ymin, ymax = array[0][3], array[0][3], array[0][4], array[0][4]
    for i in xrange(len(array)):
        if array[i][3] > xmax:
            xmax = array[i][3]
        if array[i][3] < xmin:
            xmin = array[i][3]
        if array[i][4] > ymax:
            ymax = array[i][4]
        if array[i][4] < ymin:
            ymin = array[i][4]
    if xmax - xmin == ymax - ymin:
        return xmin, xmax, ymin, ymax
    elif xmax - xmin > ymax - ymin:
        return xmin, xmax, ymin, ymax+(xmax-xmin-ymax+ymin)
    else:
        return xmin, xmax+(ymax-ymin-xmax+xmin), ymin, ymax

def quadrant_of_particle(bbox, x, y):
    """Return position of quadrant of the particle (x,y)
    """
    if y >= (bbox[3] + bbox[2])/2:
        if x <= (bbox[1] + bbox[0])/2:
            return 0
        else:
            return 1
    else:
        if x >= (bbox[1] + bbox[0])/2:
            return 2
        else:
            return 3

def quadrant_bbox(bbox,quadrant):
    """Return the coordinate of the quadrant
    """
    x = (bbox[0] + bbox[1]) / 2
    y = (bbox[2] + bbox[3]) / 2
    #Quadrant 0: (xmin, x, y, ymax)
    if quadrant == 0:
        return bbox[0], x, y, bbox[3]
    #Quadrant 1: (x, xmax, y, ymax)
    elif quadrant == 1:
        return x, bbox[1], y, bbox[3]
    #Quadrant 2: (x, xmax, ymin, y)
    elif quadrant == 2:
        return x, bbox[1], bbox[2], y
    #Quadrant 3: (xmin, x, ymin, y)
    elif quadrant == 3:
        return bbox[0], x, bbox[2], y

def data_from_file(filename, array):
    with open(filename) as f:
        for line in f:
            if line[0] == '#':
                continue
            else:
                name,color,m,x,y,vx,vy = line.split(',')
                array.append([name,color,float(m),float(x)*AU,float(y)*AU,float(vx)*1000,float(vy)*1000])

if __name__ == '__main__':
    filename = ('solar-system.txt')
    particles = []
    data_from_file(filename, particles)
    #root = Node()
    #root.center_of_mass = []
    #root.bbox = find_root_bbox(particles)
    #for i in xrange(len(particles)):
    #    quad_insert(root, particles[i][3], particles[i][4], particles[i][2])
    #print 'Boundary box: ',root.bbox
    #print 'Total mass: ',root.mass
    #print 'Coordinate of center of mass: ',root.center_of_mass
    #plt.scatter(root.center_of_mass[0], root.center_of_mass[1], c='r', marker='x', s=50)
    #print 'Theta: ', theta
    integrate(particles)
    plt.show()