Spaces:
Sleeping
Sleeping
File size: 8,845 Bytes
31c1396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import diffusers
import random
import json
diffusers.utils.logging.set_verbosity_error()
import torch
from PIL import Image
import numpy as np
from unet.unet_controller import UNetController
from main import load_unet_controller
from unet import utils
# Global flag to control interruption
interrupt_flag = False
def main_gradio(model_path, id_prompt, frame_prompt_list, precision, seed, window_length, alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, use_freeu, use_same_init_noise):
global interrupt_flag
interrupt_flag = False # Reset the flag at the start of the function
if seed == -1:
seed = random.randint(0, 2**32 - 1)
frame_prompt_list = frame_prompt_list.split(",")
pipe, _ = utils.load_pipe_from_path(model_path, "cuda:1", torch.float16 if precision == "fp16" else torch.float32, precision)
if interrupt_flag:
print("Generation interrupted")
del pipe
torch.cuda.empty_cache()
if 'story_image' not in locals():
empty_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
yield empty_image
return
unet_controller = load_unet_controller(pipe, "cuda:1")
unet_controller.Alpha_enhance = alpha_enhance
unet_controller.Beta_enhance = beta_enhance
unet_controller.Alpha_weaken = alpha_weaken
unet_controller.Beta_weaken = beta_weaken
unet_controller.Ipca_dropout = ipca_drop_out
unet_controller.Is_freeu_enabled = use_freeu
unet_controller.Use_same_init_noise = use_same_init_noise
import os
from datetime import datetime
current_time = datetime.now().strftime("%Y%m%d%H")
current_time_ = datetime.now().strftime("%M%S")
save_dir = os.path.join(".", f'result/{current_time}/{current_time_}_gradio_seed{seed}')
os.makedirs(save_dir, exist_ok=True)
generate = torch.Generator().manual_seed(seed)
if unet_controller.Use_ipca is True:
unet_controller.Store_qkv = True
original_prompt_embeds_mode = unet_controller.Prompt_embeds_mode
unet_controller.Prompt_embeds_mode = "original"
_ = pipe(id_prompt, generator=generate, unet_controller=unet_controller).images
unet_controller.Prompt_embeds_mode = original_prompt_embeds_mode
unet_controller.Store_qkv = False
max_window_length = utils.get_max_window_length(unet_controller, id_prompt, frame_prompt_list)
window_length = min(window_length, max_window_length)
if window_length < len(frame_prompt_list):
movement_lists = utils.circular_sliding_windows(frame_prompt_list, window_length)
else:
movement_lists = [movement for movement in frame_prompt_list]
story_image_list = []
generate = torch.Generator().manual_seed(seed)
unet_controller.id_prompt = id_prompt
for index, movement in enumerate(frame_prompt_list):
if interrupt_flag:
print("Generation interrupted")
del pipe
torch.cuda.empty_cache()
if 'story_image' not in locals():
empty_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
yield empty_image
return
if unet_controller is not None:
if window_length < len(frame_prompt_list):
unet_controller.frame_prompt_suppress = movement_lists[index][1:]
unet_controller.frame_prompt_express = movement_lists[index][0]
gen_propmts = [f'{id_prompt} {" ".join(movement_lists[index])}']
else:
unet_controller.frame_prompt_suppress = movement_lists[:index] + movement_lists[index+1:]
unet_controller.frame_prompt_express = movement_lists[index]
gen_propmts = [f'{id_prompt} {" ".join(movement_lists)}']
else:
gen_propmts = f'{id_prompt} {movement}'
print(f"suppress: {unet_controller.frame_prompt_suppress}")
print(f"express: {unet_controller.frame_prompt_express}")
print(f'id_prompt: {id_prompt}')
print(f"gen_propmts: {gen_propmts}")
if unet_controller is not None and unet_controller.Use_same_init_noise is True:
generate = torch.Generator().manual_seed(seed)
images = pipe(gen_propmts, generator=generate, unet_controller=unet_controller).images
story_image_list.append(images[0])
story_image = np.concatenate(story_image_list, axis=1)
story_image = Image.fromarray(story_image.astype(np.uint8))
yield story_image
import os
images[0].save(os.path.join(save_dir, f'{id_prompt} {unet_controller.frame_prompt_express}.jpg'))
story_image.save(os.path.join(save_dir, 'story_image.jpg'))
import gc
del pipe
gc.collect()
torch.cuda.empty_cache()
# Gradio interface
def gradio_interface():
global interrupt_flag
with gr.Blocks() as demo:
gr.Markdown("### Consistent Image Generation with 1Prompt1Story")
# Load JSON data
with open('./resource/example.json', 'r') as f:
data = json.load(f)
# Extract id_prompts and frame_prompts
id_prompts = [item['id_prompt'] for item in data['combinations']]
frame_prompts = [", ".join(item['frame_prompt_list']) for item in data['combinations']]
# Input fields
id_prompt = gr.Dropdown(
label="ID Prompt",
choices=id_prompts,
value=id_prompts[0],
allow_custom_value=True
)
frame_prompt_list = gr.Dropdown(
label="Frame Prompts (comma-separated)",
choices=frame_prompts,
value=frame_prompts[0],
allow_custom_value=True
)
model_path = gr.Dropdown(
label="Model Path",
choices=["stabilityai/stable-diffusion-xl-base-1.0", "RunDiffusion/Juggernaut-X-v10", "playgroundai/playground-v2.5-1024px-aesthetic", "SG161222/RealVisXL_V4.0", "RunDiffusion/Juggernaut-XI-v11", "SG161222/RealVisXL_V5.0"],
value="playgroundai/playground-v2.5-1024px-aesthetic",
allow_custom_value=True
)
with gr.Row():
seed = gr.Slider(label="Seed (set -1 for random seed)", minimum=-1, maximum=10000, value=-1, step=1)
window_length = gr.Slider(label="Window Length", minimum=1, maximum=20, value=10, step=1)
with gr.Row():
alpha_weaken = gr.Number(label="Alpha Weaken", value=UNetController.Alpha_weaken, interactive=True, step=0.01)
beta_weaken = gr.Number(label="Beta Weaken", value=UNetController.Beta_weaken, interactive=True, step=0.01)
alpha_enhance = gr.Number(label="Alpha Enhance", value=UNetController.Alpha_enhance, interactive=True, step=0.001)
beta_enhance = gr.Number(label="Beta Enhance", value=UNetController.Beta_enhance, interactive=True, step=0.1)
with gr.Row():
ipca_drop_out = gr.Number(label="Ipca Dropout", value=UNetController.Ipca_dropout, interactive=True, step=0.1, minimum=0, maximum=1)
precision = gr.Dropdown(label="Precision", choices=["fp16", "fp32"], value="fp16")
use_freeu = gr.Dropdown(label="Use FreeU", choices=[False, True], value=UNetController.Is_freeu_enabled)
use_same_init_noise = gr.Dropdown(label="Use Same Init Noise", choices=[True, False], value=UNetController.Use_same_init_noise)
reset_button = gr.Button("Reset to Default")
def reset_values():
return UNetController.Alpha_weaken, UNetController.Beta_weaken, UNetController.Alpha_enhance, UNetController.Beta_enhance, UNetController.Ipca_dropout, "fp16", UNetController.Is_freeu_enabled, UNetController.Use_same_init_noise
reset_button.click(
fn=reset_values,
inputs=[],
outputs=[alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, precision, use_freeu, use_same_init_noise]
)
# Output
output_gallery = gr.Image()
# Buttons
generate_button = gr.Button("Generate Images")
interrupt_button = gr.Button("Interrupt")
def interrupt_generation():
global interrupt_flag
interrupt_flag = True
interrupt_button.click(
fn=interrupt_generation,
inputs=[],
outputs=[]
)
generate_button.click(
fn=main_gradio,
inputs=[
model_path, id_prompt, frame_prompt_list, precision, seed, window_length, alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, use_freeu, use_same_init_noise
],
outputs=output_gallery
)
return demo
if __name__ == "__main__":
demo = gradio_interface()
demo.launch(share=True)
|