File size: 8,845 Bytes
31c1396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import gradio as gr
import diffusers
import random
import json
diffusers.utils.logging.set_verbosity_error()
import torch
from PIL import Image
import numpy as np

from unet.unet_controller import UNetController
from main import load_unet_controller
from unet import utils


# Global flag to control interruption
interrupt_flag = False


def main_gradio(model_path, id_prompt, frame_prompt_list, precision, seed, window_length, alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, use_freeu, use_same_init_noise):
    global interrupt_flag
    interrupt_flag = False  # Reset the flag at the start of the function

    if seed == -1:
        seed = random.randint(0, 2**32 - 1)
    frame_prompt_list = frame_prompt_list.split(",")
    pipe, _ = utils.load_pipe_from_path(model_path, "cuda:1", torch.float16 if precision == "fp16" else torch.float32, precision)
    
    if interrupt_flag:
        print("Generation interrupted")
        del pipe
        torch.cuda.empty_cache()

        if 'story_image' not in locals():
            empty_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
            yield empty_image

        return

    unet_controller = load_unet_controller(pipe, "cuda:1")
    unet_controller.Alpha_enhance = alpha_enhance
    unet_controller.Beta_enhance = beta_enhance
    unet_controller.Alpha_weaken = alpha_weaken
    unet_controller.Beta_weaken = beta_weaken
    unet_controller.Ipca_dropout = ipca_drop_out
    unet_controller.Is_freeu_enabled = use_freeu
    unet_controller.Use_same_init_noise = use_same_init_noise

    import os
    from datetime import datetime

    current_time = datetime.now().strftime("%Y%m%d%H")
    current_time_ = datetime.now().strftime("%M%S")
    save_dir = os.path.join(".", f'result/{current_time}/{current_time_}_gradio_seed{seed}')
    os.makedirs(save_dir, exist_ok=True)

    generate = torch.Generator().manual_seed(seed)
    if unet_controller.Use_ipca is True:
        unet_controller.Store_qkv = True
        original_prompt_embeds_mode = unet_controller.Prompt_embeds_mode
        unet_controller.Prompt_embeds_mode = "original"
        _ = pipe(id_prompt, generator=generate, unet_controller=unet_controller).images
        unet_controller.Prompt_embeds_mode = original_prompt_embeds_mode

    unet_controller.Store_qkv = False
    max_window_length = utils.get_max_window_length(unet_controller, id_prompt, frame_prompt_list)
    window_length = min(window_length, max_window_length)
    if window_length < len(frame_prompt_list):
        movement_lists = utils.circular_sliding_windows(frame_prompt_list, window_length)
    else:
        movement_lists = [movement for movement in frame_prompt_list]
    
    story_image_list = []
    generate = torch.Generator().manual_seed(seed)
    unet_controller.id_prompt = id_prompt
    for index, movement in enumerate(frame_prompt_list):
        if interrupt_flag:
            print("Generation interrupted")
            del pipe
            torch.cuda.empty_cache()

            if 'story_image' not in locals():
                empty_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
                yield empty_image

            return

        if unet_controller is not None:
            if window_length < len(frame_prompt_list):
                unet_controller.frame_prompt_suppress = movement_lists[index][1:]
                unet_controller.frame_prompt_express = movement_lists[index][0]
                gen_propmts = [f'{id_prompt} {" ".join(movement_lists[index])}']
            else:
                unet_controller.frame_prompt_suppress = movement_lists[:index] + movement_lists[index+1:]
                unet_controller.frame_prompt_express = movement_lists[index]
                gen_propmts = [f'{id_prompt} {" ".join(movement_lists)}']
        else:
            gen_propmts = f'{id_prompt} {movement}'


        print(f"suppress: {unet_controller.frame_prompt_suppress}")
        print(f"express: {unet_controller.frame_prompt_express}")
        print(f'id_prompt: {id_prompt}')
        print(f"gen_propmts: {gen_propmts}")

        if unet_controller is not None and unet_controller.Use_same_init_noise is True:
            generate = torch.Generator().manual_seed(seed)

        images = pipe(gen_propmts, generator=generate, unet_controller=unet_controller).images
        story_image_list.append(images[0])

        story_image = np.concatenate(story_image_list, axis=1)
        story_image = Image.fromarray(story_image.astype(np.uint8))

        yield story_image
        import os
        images[0].save(os.path.join(save_dir, f'{id_prompt} {unet_controller.frame_prompt_express}.jpg'))

    story_image.save(os.path.join(save_dir, 'story_image.jpg'))

    import gc
    del pipe
    gc.collect()
    torch.cuda.empty_cache()

# Gradio interface
def gradio_interface():
    global interrupt_flag

    with gr.Blocks() as demo:
        gr.Markdown("### Consistent Image Generation with 1Prompt1Story")

        # Load JSON data
        with open('./resource/example.json', 'r') as f:
            data = json.load(f)

        # Extract id_prompts and frame_prompts
        id_prompts = [item['id_prompt'] for item in data['combinations']]
        frame_prompts = [", ".join(item['frame_prompt_list']) for item in data['combinations']]

        # Input fields
        id_prompt = gr.Dropdown(
            label="ID Prompt",
            choices=id_prompts,
            value=id_prompts[0],
            allow_custom_value=True
        )
        frame_prompt_list = gr.Dropdown(
            label="Frame Prompts (comma-separated)",
            choices=frame_prompts,
            value=frame_prompts[0],
            allow_custom_value=True
        )
        model_path = gr.Dropdown(
            label="Model Path",
            choices=["stabilityai/stable-diffusion-xl-base-1.0", "RunDiffusion/Juggernaut-X-v10", "playgroundai/playground-v2.5-1024px-aesthetic", "SG161222/RealVisXL_V4.0", "RunDiffusion/Juggernaut-XI-v11", "SG161222/RealVisXL_V5.0"],
            value="playgroundai/playground-v2.5-1024px-aesthetic",
            allow_custom_value=True
        )
        
        with gr.Row():
            seed = gr.Slider(label="Seed (set -1 for random seed)", minimum=-1, maximum=10000, value=-1, step=1)
            window_length = gr.Slider(label="Window Length", minimum=1, maximum=20, value=10, step=1)

        with gr.Row():
            alpha_weaken = gr.Number(label="Alpha Weaken", value=UNetController.Alpha_weaken, interactive=True, step=0.01)
            beta_weaken = gr.Number(label="Beta Weaken", value=UNetController.Beta_weaken, interactive=True, step=0.01)
            alpha_enhance = gr.Number(label="Alpha Enhance", value=UNetController.Alpha_enhance, interactive=True, step=0.001)
            beta_enhance = gr.Number(label="Beta Enhance", value=UNetController.Beta_enhance, interactive=True, step=0.1)
        
        with gr.Row():
            ipca_drop_out = gr.Number(label="Ipca Dropout", value=UNetController.Ipca_dropout, interactive=True, step=0.1, minimum=0, maximum=1)
            precision = gr.Dropdown(label="Precision", choices=["fp16", "fp32"], value="fp16")
            use_freeu = gr.Dropdown(label="Use FreeU", choices=[False, True], value=UNetController.Is_freeu_enabled)
            use_same_init_noise = gr.Dropdown(label="Use Same Init Noise", choices=[True, False], value=UNetController.Use_same_init_noise)
        
        reset_button = gr.Button("Reset to Default")

        def reset_values():
            return UNetController.Alpha_weaken, UNetController.Beta_weaken, UNetController.Alpha_enhance, UNetController.Beta_enhance, UNetController.Ipca_dropout, "fp16", UNetController.Is_freeu_enabled, UNetController.Use_same_init_noise

        reset_button.click(
            fn=reset_values,
            inputs=[],
            outputs=[alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, precision, use_freeu, use_same_init_noise]
        )

        # Output
        output_gallery = gr.Image()

        # Buttons
        generate_button = gr.Button("Generate Images")
        interrupt_button = gr.Button("Interrupt")

        def interrupt_generation():
            global interrupt_flag
            interrupt_flag = True

        interrupt_button.click(
            fn=interrupt_generation,
            inputs=[],
            outputs=[]
        )

        generate_button.click(
            fn=main_gradio,
            inputs=[
                model_path, id_prompt, frame_prompt_list, precision, seed, window_length, alpha_weaken, beta_weaken, alpha_enhance, beta_enhance, ipca_drop_out, use_freeu, use_same_init_noise
            ],
            outputs=output_gallery
        )

    return demo


if __name__ == "__main__":
    demo = gradio_interface()
    demo.launch(share=True)